Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 561
Filter
1.
BMC Pulm Med ; 24(1): 343, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014333

ABSTRACT

BACKGROUND: Primary ciliary dyskinesia (PCD) is an autosomal recessive hereditary disease characterized by recurrent respiratory infections. In clinical manifestations, DNAH5 (NM_001361.3) is one of the recessive pathogenic genes. Primary familial brain calcification (PFBC) is a neurodegenerative disease characterized by bilateral calcification in the basal ganglia and other brain regions. PFBC can be inherited in an autosomal dominant or recessive manner. A family with PCD caused by a DNAH5 compound heterozygous variant and PFBC caused by a MYORG homozygous variant was analyzed. METHODS: In this study, we recruited three generations of Han families with primary ciliary dyskinesia combined with primary familial brain calcification. Their clinical phenotype data were collected, next-generation sequencing was performed to screen suspected pathogenic mutations in the proband and segregation analysis of families was carried out by Sanger sequencing. The mutant and wild-type plasmids were constructed and transfected into HEK293T cells instantaneously, and splicing patterns were detected by Minigene splicing assay. The structure and function of mutations were analyzed by bioinformatics analysis. RESULTS: The clinical phenotypes of the proband (II10) and his sister (II8) were bronchiectasis, recurrent pulmonary infection, multiple symmetric calcifications of bilateral globus pallidus and cerebellar dentate nucleus, paranasal sinusitis in the whole group, and electron microscopy of bronchial mucosa showed that the ciliary axoneme was defective. There was also total visceral inversion in II10 but not in II8. A novel splice variant C.13,338 + 5G > C and a frameshift variant C.4314delT (p. Asn1438lysfs *10) were found in the DNAH5 gene in proband (II10) and II8. c.347_348dupCTGGCCTTCCGC homozygous insertion variation was found in the MYORG of the proband. The two pathogenic genes were co-segregated in the family. Minigene showed that DNAH5 c.13,338 + 5G > C has two abnormal splicing modes: One is that part of the intron bases where the mutation site located is translated, resulting in early translation termination of DNAH5; The other is the mutation resulting in the deletion of exon76. CONCLUSIONS: The newly identified DNAH5 splicing mutation c.13,338 + 5G > C is involved in the pathogenesis of PCD in the family, and forms a compound heterozygote with the pathogenic variant DNAH5 c.4314delT lead to the pathogenesis of PCD.


Subject(s)
Calcinosis , Mutation , Pedigree , Humans , Male , Calcinosis/genetics , Calcinosis/pathology , Female , Axonemal Dyneins/genetics , Adult , Ciliary Motility Disorders/genetics , Brain Diseases/genetics , Phenotype , HEK293 Cells , China , RNA Splicing/genetics , Middle Aged , Glycoside Hydrolases
2.
J Clin Med ; 13(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38999425

ABSTRACT

Background and Objectives: Pulmonary hypertension (PH) is a clinical condition with high mortality rates, particularly in patients over 65. Current guidelines recommend assessing the likelihood of pulmonary hypertension (LPH) using advanced echocardiography before proceeding to right heart catheterization. This study proposed using the common femoral vein (CFV), an accessible vein that reflects right atrial pressure, as an alternative method to assess the high likelihood of pulmonary hypertension (H-LPH). Materials and Methods: This prospective observational study included 175 emergency patients from three hospitals. Ultrasound assessed the pulsed wave Doppler (PW-Doppler) morphology of the CFV. This diagnostic yield for H-LPH was evaluated alongside traditional ultrasound parameters (right-to-left ventricular basal diameter ratio greater than 1 (RV > LV), septal flattening, right ventricular outflow acceleration time (RVOT) of less than 105 ms and/or mesosystolic notching, pulmonary artery diameter greater than the aortic root (AR) diameter or over 25 mm, early pulmonary regurgitation maximum velocity > 2.2 m/s; TAPSE/PASP less than 0.55, inferior vena cava (IVC) diameter over 21 mm with decreased inspiratory collapse, and right atrial (RA) area over 18 cm2). Results: The CFV's PW-Doppler cardiac pattern correlated strongly with H-LPH, showing a sensitivity (Sn) of 72% and a specificity (Sp) of 96%. RA dilation and TAPSE/PASP < 0.55 also played significant diagnostic roles. Conclusions: The CFV's PW-Doppler cardiac pattern is an effective indicator of H-LPH, allowing reliable exclusion of this condition when absent. This approach could simplify initial LPH evaluation in emergency settings or where echocardiographic resources are limited.

3.
BMC Public Health ; 24(1): 1989, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054517

ABSTRACT

BACKGROUND: Psychological resilience has been associated with increased longevity in the oldest old; however, its significance in the broader older adult population has not been thoroughly explored. There is a lack of understanding regarding its relationship with cause-specific mortality in older adults. This study aims to address these gaps by investigating the association between psychological resilience and both overall mortality and cause-specific mortality in individuals aged 65 and older. METHODS: We enrolled 4,935 participants aged 65 and older in the Chinese Longitudinal Healthy Longevity Survey, with baseline assessments conducted in 2014 and follow-up surveys in 2018. To evaluate the associations between psychological resilience and mortality, we used Cox proportional hazards models. Additionally, we employed restricted cubic spline plots to illustrate the dose-response relationships between these variables. RESULTS: During a mean (Standard Deviation) follow-up of 3.2 years (1.2), 1726 participants died. Higher psychological resilience was independently associated with lower all-cause mortality risk (Hazard ratio [HR] 0.74, 95% confidence interval [CI]: 0.67-0.82) and cause-specific mortality from cardiovascular disease (HR 0.74, 95% CI: 0.59-0.93), respiratory diseases (HR 0.63, 95% CI:0.45-0.87), and other causes (HR 0.69, 95% CI: 0.60-0.78), excluding cancer-related mortality. Similar effects were evident when examining the psychological resilience score. The dose-response analysis further indicated a gradual decrease in mortality risk corresponding to higher psychological resilience scores. Interaction analyses revealed that psychological resilience has a more pronounced effect on mortality from other causes among economically independent older adults (P-interaction = 0.02). CONCLUSIONS: Enhanced psychological resilience is independently associated with reduced all-cause and some cause-specific mortality in older adults. These findings underscore the importance of addressing psychological factors in the promotion of healthy aging and longevity.


Subject(s)
Cause of Death , Resilience, Psychological , Humans , Male , Aged , Female , Longitudinal Studies , Aged, 80 and over , China/epidemiology , Proportional Hazards Models , Mortality/trends , Cohort Studies
4.
Heliyon ; 10(11): e32377, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947486

ABSTRACT

Acute kidney injury (AKI) frequently emerges as a consequential non-neurological sequel to traumatic brain injury (TBI), significantly contributing to heightened mortality risks. The intricate interplay of oxidative stress in the pathophysiology of TBI underscores the centrality of the Keap1-Nrf2/HO-1 signaling pathway as a pivotal regulator in this context. This study endeavors to elucidate the involvement of the Keap1-Nrf2/HO-1 pathway in modulating oxidative stress in AKI subsequent to TBI and concurrently explore the therapeutic efficacy of dimethyl fumarate (DMF). A rat model of TBI was established via the Feeney free-fall method, incorporating interventions with varying concentrations of DMF. Assessment of renal function ensued through measurements of serum creatinine and neutrophil gelatinase-associated lipocalin. Morphological evaluation of renal pathology was conducted employing quantitative hematoxylin and eosin staining. The inflammatory response was scrutinized by quantifying interleukin (IL)-6, IL-1ß, and tumor necrosis factor-α levels. Oxidative stress levels were discerned through quantification of malondialdehyde and superoxide dismutase. The apoptotic cascade was examined via the terminal deoxynucleotidyl transferase dUTP deletion labeling assay. Western blotting provided insights into the expression dynamics of proteins affiliated with the Keap1-Nrf2/HO-1 pathway and apoptosis. The findings revealed severe kidney injury, heightened oxidative stress, inflammation, and apoptosis in the traumatic brain injury model. Treatment with DMF effectively reversed these changes, alleviating oxidative stress by activating the Keap1-Nrf2/HO-1 signaling pathway, ultimately conferring protection against AKI. Activating Keap1-Nrf2/HO-1 signaling pathway may be a potential therapeutic strategy for attenuating oxidative stress-induced AKI after TBI.

5.
Biomed Pharmacother ; 177: 117013, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901205

ABSTRACT

OBJECTIVE: Dendrobin A, a typical active ingredient of the traditional Chinese medicine Dendrobium nobile, has potential clinical application in cancer treatment; however, its effect and mechanism in anti-hepatocellular carcinoma (HCC) remain unsolved. METHOD: The effects of Dendrobin A on the viability, migration, invasion, cycle, apoptosis, and epithelial-mesenchymal transition of HepG2 and SK-HEP-1 cells were verified by in vitro experiments. mRNA sequencing was performed to screen the differentially expressed genes (DEGs) of HCC cells before and after Dendrobin A treatment, following GO enrichment and KEGG signaling pathway analyses. Mechanistically, molecular docking was used to evaluate the binding of Dendrobin A with proteins p65 and p50, before further verifying the activation of nuclear factor kappa-B (NF-κB) signaling. Finally, the antiproliferative effect of Dendrobin A on HCC cells was explored through animal experiments. RESULTS: Dendrobin A arrested cell cycle, induced apoptosis, and inhibited proliferation, migration, invasion, and blocked epithelial-mesenchymal transition in HepG2 and SK-HEP-1 cells. mRNA sequencing identified 830 DEGs, involving various biological processes. KEGG analysis highlighted NF-κB signaling. Molecular docking revealed strong binding of Dendrobin A with p65 and p50 proteins, and western blotting confirmed reduced levels of p-p65 and p-p50 in HCC cells post Dendrobin A treatment. NF-κB agonist PMA reversed Dendrobin A-inhibited cell proliferation migration and invasion. In vivo experiments showed that Dendrobin A inhibited HCC cell growth. CONCLUSION: Our findings suggest that Dendrobin A exhibits anti-HCC properties by inhibiting the activation of the NF-κB pathway. These results provide a scientific basis for utilizing Dendrobium nobile in anti-HCC therapies.

6.
Environ Technol ; : 1-14, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770638

ABSTRACT

SiO2-coated nano zero-valent iron (nZVI) has emerged as a fine material for the treatment of dye wastewater due to its large specific surface area, high surface activity, and strong reducibility. However, the magnetic properties based on which SiO2-coated nZVI (SiO2-nZVI) could effectively separate and recover from treated wastewater, and the biotoxicity analysis of degradation products of the dye wastewater treated by SiO2-nZVI remain unclear. In this study, SiO2-nZVI was synthesized using a modified one-step synthesis method. The SiO2-nZVI nanoparticles were characterized using Transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, Fully automatic specific surface and porosity analyzer, Vibrating sample magnetometer, and Zeta potential analyzer. The removal rate of methyl orange (MO) by SiO2-nZVI composite reached 98.35% when the degradation performance of SiO2-nZVI treating MO was optimized. Since SiO2-nZVI analysed by magnetic hysteresis loops had large saturation magnetization and strong magnetic properties, SiO2-nZVI exhibited excellent ferromagnetic behaviour. The analysis of the degradation products showed that the MO treated by SiO2-nZVI was converted into a series of intermediates, resulting in reducing the toxicity of MO. The potential mechanism of MO degradated by SiO2-nZVI was speculated through degradation process and degradation kinetics analysis. Overall, the SiO2-nZVI composite may be regarded as a promising catalyst for decolorization of dye wastewater.

7.
Life Sci ; 348: 122701, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38724005

ABSTRACT

Hyperinflammatory responses are pivotal in the cardiomyocyte senescence pathophysiology, with IL33 serving as a crucial pro-inflammatory mediator. Our previous findings highlighted RND3's suppressive effect on IL33 expression. This study aims to explore the role of RND3 in IL33/ST2 signaling activation and in cardiomyocyte senescence. Intramyocardial injection of exogenous IL33 reduces the ejection fraction and fractional shortening of rats, inducing the appearance of senescence-associated secretory phenotype (SASP) in myocardial tissues. Recombinant IL33 treatment of AC16 cardiomyocytes significantly upregulated expression of SASP factors like IL1α, IL6, and MCP1, and increased the p-p65/p65 ratio and proportions of SA-ß-gal and γH2AX-positive cells. NF-κB inhibitor pyrrolidinedithiocarbamate ammonium (PDTC) and ST2 antibody astegolimab treatments mitigated above effects. RND3 gene knockout H9C2 cardiomyocytes using CRISPR/Cas9 technology upregulated IL33, ST2L, IL1α, IL6, and MCP1 levels, decreased sST2 levels, and increased SA-ß-gal and γH2AX-positive cells. A highly possibility of binding between RND3 and IL33 proteins was showed by molecular docking and co-immunoprecipitation, and loss of RND3 attenuated ubiquitination mediated degradation of IL33; what's more, a panel of ubiquitination regulatory genes closely related to RND3 were screened using qPCR array. In contrast, RND3 overexpression in rats by injection of AAV9-CMV-RND3 particles inhibited IL33, ST2L, IL1α, IL6, and MCP1 expression in cardiac tissues, decreased serum IL33 levels, and increased sST2 levels. These results suggest that RND3 expression in cardiomyocytes modulates cell senescence by inhibiting the IL33/ST2/NF-κB signaling pathway, underscoring its potential as a therapeutic target in cardiovascular senescence.


Subject(s)
Cellular Senescence , Interleukin-33 , Myocytes, Cardiac , Signal Transduction , Animals , Male , Rats , Cell Line , Cellular Senescence/drug effects , Interleukin-33/metabolism , Myocytes, Cardiac/metabolism , NF-kappa B/metabolism , Rats, Sprague-Dawley , Receptors, Interleukin-1 , rho GTP-Binding Proteins/metabolism , rho GTP-Binding Proteins/genetics
8.
J Transl Med ; 22(1): 391, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678297

ABSTRACT

BACKGROUND: Laminin subunit gamma-1 (LAMC1) is a major extracellular matrix molecule involved in the tumor microenvironment. Knowledge of the biological features and clinical relevance of LAMC1 in cancers remains limited. METHODS: We conducted comprehensive bioinformatics analysis of LAMC1 gene expression and clinical relevance in pan-cancer datasets of public databases and validated LAMC1 expression in glioma tissues and cell lines. The association and regulatory mechanism between hypoxia inducible factor-1α (HIF-1α) and LAMC1 expression were explored. RESULTS: LAMC1 expression in most cancers in The Cancer Genome Atlas (TCGA) including glioma was significantly higher than that in normal tissues, which had a poor prognosis and were related to various clinicopathological features. Data from the Chinese Glioma Genome Atlas also showed high expression of LAMC1 in glioma associated with poor prognoses. In clinical glioma tissues, LAMC1 protein was highly expressed and correlated to poor overall survival. LAMC1 knockdown in Hs683 glioma cells attenuated cell proliferation, migration, and invasion, while overexpression of LAMC1 in U251 cells leads to the opposite trend. Most TCGA solid cancers including glioma showed enhancement of HIF-1α expression. High HIF-1α expression leads to adverse prognosis in gliomas, besides, HIF-1α expression was positively related to LAMC1. Mechanistically, HIF-1α directly upregulated LAMC1 promotor activity. Hypoxia (2% O2)-treated Hs683 and U251 cells exhibited upregulated HIF-1α and LAMC1 expression, which was significantly attenuated by HIF-1α inhibitor YC-1 and accompanied by attenuated cell proliferation and invasion. CONCLUSIONS: High expression of LAMC1 in some solid tumors including gliomas suggests a poor prognosis. The hypoxic microenvironment in gliomas activates the HIF-1α/LAMC1 signaling, thereby promoting tumor progression. Targeted intervention on the HIF-1α/LAMC1 signaling attenuates cell growth and invasion, suggesting a new strategy for glioma treatment.


Subject(s)
Gene Expression Regulation, Neoplastic , Glioma , Hypoxia-Inducible Factor 1, alpha Subunit , Laminin , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Prognosis , Laminin/metabolism , Laminin/genetics , Cell Line, Tumor , Cell Proliferation , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Male , Reproducibility of Results , Female , Cell Movement/genetics , Neoplasm Invasiveness , Databases, Genetic , Middle Aged , Promoter Regions, Genetic/genetics
9.
Dig Dis Sci ; 69(6): 2109-2122, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564148

ABSTRACT

BACKGROUND: Cholesterol ester storage disorder (CESD; OMIM: 278,000) was formerly assumed to be an autosomal recessive allelic genetic condition connected to diminished lysosomal acid lipase (LAL) activity due to LIPA gene abnormalities. CESD is characterized by abnormal liver function and lipid metabolism, and in severe cases, liver failure can occur leading to death. In this study, one Chinese nonclassical CESD pedigree with dominant inheritance was phenotyped and analyzed for the corresponding gene alterations. METHODS: Seven males and eight females from nonclassical CESD pedigree were recruited. Clinical features and LAL activities were documented. Whole genome Next-generation sequencing (NGS) was used to screen candidate genes and mutations, Sanger sequencing confirmed predicted mutations, and qPCR detected LIPA mRNA expression. RESULTS: Eight individuals of the pedigree were speculatively thought to have CESD. LAL activity was discovered to be lowered in four living members of the pedigree, but undetectable in the other four deceased members who died of probable hepatic failure. Three of the four living relatives had abnormal lipid metabolism and all four had liver dysfunctions. By liver biopsy, the proband exhibited diffuse vesicular fatty changes in noticeably enlarged hepatocytes and Kupffer cell hyperplasia. Surprisingly, only a newly discovered heterozygous mutation, c.1133T>C (p. Ile378Thr) on LIPA, was found by gene sequencing in the proband. All living family members who carried the p.I378T variant displayed reduced LAL activity. CONCLUSIONS: Phenotypic analyses indicate that this may be an autosomal dominant nonclassical CESD pedigree with a LIPA gene mutation.


Subject(s)
Cholesterol Ester Storage Disease , Heterozygote , Pedigree , Sterol Esterase , Humans , Male , Female , Cholesterol Ester Storage Disease/genetics , Cholesterol Ester Storage Disease/diagnosis , Sterol Esterase/genetics , Adult , Mutation , Genes, Dominant , Middle Aged , Phenotype , Adolescent , Child
10.
BMC Genomics ; 25(1): 354, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594645

ABSTRACT

The homeodomain-leucine zipper (HD-Zip) gene family plays a pivotal role in plant development and stress responses. Nevertheless, a comprehensive characterization of the HD-Zip gene family in kiwifruit has been lacking. In this study, we have systematically identified 70 HD-Zip genes in the Actinidia chinensis (Ac) genome and 55 in the Actinidia eriantha (Ae) genome. These genes have been categorized into four subfamilies (HD-Zip I, II, III, and IV) through rigorous phylogenetic analysis. Analysis of synteny patterns and selection pressures has provided insights into how whole-genome duplication (WGD) or segmental may have contributed to the divergence in gene numbers between these two kiwifruit species, with duplicated gene pairs undergoing purifying selection. Furthermore, our study has unveiled tissue-specific expression patterns among kiwifruit HD-Zip genes, with some genes identified as key regulators of kiwifruit responses to bacterial canker disease and postharvest processes. These findings not only offer valuable insights into the evolutionary and functional characteristics of kiwifruit HD-Zips but also shed light on their potential roles in plant growth and development.


Subject(s)
Actinidia , Homeodomain Proteins , Homeodomain Proteins/genetics , Genome, Plant , Phylogeny , Actinidia/genetics , Leucine Zippers/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Gene Expression Profiling
11.
Sci Rep ; 14(1): 7638, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561452

ABSTRACT

Hypomyelinating leukodystrophy (HLD) is a rare genetic heterogeneous disease that can affect myelin development in the central nervous system. This study aims to analyze the clinical phenotype and genetic function of a family with HLD-7 caused by POLR3A mutation. The proband (IV6) in this family mainly showed progressive cognitive decline, dentin dysplasia, and hypogonadotropic hypogonadism. Her three old brothers (IV1, IV2, and IV4) also had different degrees of ataxia, dystonia, or dysarthria besides the aforementioned manifestations. Their brain magnetic resonance imaging showed bilateral periventricular white matter atrophy, brain atrophy, and corpus callosum atrophy and thinning. The proband and her two living brothers (IV2 and IV4) were detected to carry a homozygous mutation of the POLR3A (NM_007055.4) gene c. 2300G > T (p.Cys767Phe), and her consanguineous married parents (III1 and III2) were p.Cys767Phe heterozygous carriers. In the constructed POLR3A wild-type and p.Cys767Phe mutant cells, it was seen that overexpression of wild-type POLR3A protein significantly enhanced Pol III transcription of 5S rRNA and tRNA Leu-CAA. However, although the mutant POLR3A protein overexpression was increased compared to the wild-type protein overexpression, it did not show the expected further enhancement of Pol III function. On the contrary, Pol III transcription function was frustrated (POLR3A, BC200, and tRNA Leu-CAA expression decreased), and MBP and 18S rRNA expressions were decreased. This study indicates that the POLR3A p.Cys767Phe variant caused increased expression of mutated POLR3A protein and abnormal expression of Pol III transcripts, and the mutant POLR3A protein function was abnormal.


Subject(s)
Hereditary Central Nervous System Demyelinating Diseases , Male , Female , Humans , Hereditary Central Nervous System Demyelinating Diseases/genetics , Mutation , Phenotype , Atrophy , RNA, Transfer , RNA Polymerase III/genetics , RNA Polymerase III/metabolism
12.
Signal Transduct Target Ther ; 9(1): 80, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565536

ABSTRACT

RNA-binding proteins (RBPs)-RNA networks have contributed to cancer development. Circular RNAs (circRNAs) are considered as protein recruiters; nevertheless, the patterns of circRNA-protein interactions in colorectal cancer (CRC) are still lacking. Processing bodies (PBs) formed through liquid-liquid phase separation (LLPS) are membrane-less organelles (MLOs) consisting of RBPs and RNA. Previous evidence suggests a connection between PBs dynamics and cancer progression. Despite the increasingly acknowledged crucial role of RBPs and RNA in the accumulation and maintenance of MLOs, there remains a lack of specific research on the interactions between PBs-related RBPs and circRNAs in CRC. Herein, we identify that MEX-3 RNA binding family member A (MEX3A), frequently upregulated in CRC tissues, predicts poorer patient survival. Elevated MEX3A accelerates malignance and inhibits autophagy of CRC cells. Importantly, MEX3A undergoes intrinsically disordered regions (IDRs)-dependent LLPS in the cytoplasm. Specifically, circMPP6 acts as a scaffold to facilitate the interaction between MEX3A and PBs proteins. The MEX3A/circMPP6 complex modulates PBs dynamic and promotes UPF-mediated phosphodiesterase 5A (PDE5A) mRNA degradation, consequently leading to the aggressive properties of CRC cells. Clinically, CRC patients exhibiting high MEX3A expression and low PDE5A expression have the poorest overall survival. Our findings reveal a collaboration between MEX3A and circMPP6 in the regulation of mRNA decay through triggering the PBs aggregation, which provides prognostic markers and/or therapeutic targets for CRC.


Subject(s)
Colorectal Neoplasms , RNA, Circular , Humans , Autophagy/genetics , Colorectal Neoplasms/metabolism , Family , Phosphoproteins/metabolism , Proteins/metabolism , RNA/genetics , RNA, Circular/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
13.
Plant Commun ; 5(6): 100856, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38431772

ABSTRACT

Actinidia arguta, the most widely distributed Actinidia species and the second cultivated species in the genus, can be distinguished from the currently cultivated Actinidia chinensis on the basis of its small and smooth fruit, rapid softening, and excellent cold tolerance. Adaptive evolution of tetraploid Actinidia species and the genetic basis of their important agronomic traits are still unclear. Here, we generated a chromosome-scale genome assembly of an autotetraploid male A. arguta accession. The genome assembly was 2.77 Gb in length with a contig N50 of 9.97 Mb and was anchored onto 116 pseudo-chromosomes. Resequencing and clustering of 101 geographically representative accessions showed that they could be divided into two geographic groups, Southern and Northern, which first diverged 12.9 million years ago. A. arguta underwent two prominent expansions and one demographic bottleneck from the mid-Pleistocene climate transition to the late Pleistocene. Population genomics studies using paleoclimate data enabled us to discern the evolution of the species' adaptation to different historical environments. Three genes (AaCEL1, AaPME1, and AaDOF1) related to flesh softening were identified by multi-omics analysis, and their ability to accelerate flesh softening was verified through transient expression assays. A set of genes that characteristically regulate sexual dimorphism located on the sex chromosome (Chr3) or autosomal chromosomes showed biased expression during stamen or carpel development. This chromosome-level assembly of the autotetraploid A. arguta genome and the genes related to important agronomic traits will facilitate future functional genomics research and improvement of A. arguta.


Subject(s)
Actinidia , Genome, Plant , Tetraploidy , Actinidia/genetics , Evolution, Molecular , Adaptation, Physiological/genetics , Biological Evolution
14.
Ann Hematol ; 103(5): 1765-1774, 2024 May.
Article in English | MEDLINE | ID: mdl-38509388

ABSTRACT

Gaucher disease (GD) is an autosomal recessive ailment resulting from glucocerebrosidase deficiency caused by a mutation in the GBA1 gene, leading to multi-organ problems in the liver, spleen, and bone marrow. In China, GD is extremely uncommon and has a lower incidence rate than worldwide. In this study, we report the case of an adult male with an enlarged spleen for 13 years who presented with abdominal distension, severe loss of appetite and weight, reduction of the three-line due to hypersplenism, frequent nosebleeds, and bloody stools. Regrettably, the unexpected discovery of splenic pathology suggestive of splenic Gaucher disease was only made after a splenectomy due to a lack of knowledge about rare disorders. Our patient's delayed diagnosis may have been due to the department where he was originally treated, but it highlights the need for multidisciplinary consultation in splenomegaly of unknown etiology. We then investigated the patient's clinical phenotypes and gene mutation features using genetically phenotypical analysis. The analysis of the GBA1 gene sequence indicated that the patient carried a compound heterozygous mutation consisting of two potentially disease-causing mutations: c.907C > A (p. Leu303Ile) and c.1448 T > C (p. Leu483Pro). While previous research has linked the p. Leu483Pro mutation site to neurologic GD phenotypes (GD2 and GD3), the patients in this investigation were identified as having non-neuronopathic GD1. The other mutation, p. Leu303Ile, is a new GD-related mutation not indexed in PubMed that enriches the GBA1 gene mutation spectrum. Biosignature analysis has shown that both mutations alter the protein's three-dimensional structure, which may be a pathogenic mechanism for GD1 in this patient.


Subject(s)
Gaucher Disease , Splenic Diseases , Adult , Humans , Male , Gaucher Disease/complications , Gaucher Disease/genetics , Gaucher Disease/surgery , Splenectomy , Bone Marrow , Phenotype , Splenomegaly/genetics , Mutation , Glucosylceramidase/genetics
15.
Chemistry ; 30(26): e202304334, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38388776

ABSTRACT

Sensing of benzene vapor is a hot spot due to the volatile drastic carcinogen even at trace concentration. However, achieving convenient and rapid detection is still a challenge. As a sort of functional porous material, metal-organic frameworks (MOFs) have been developed as detection sensors by adsorbing benzene vapor and converting it into other signals (fluorescence intensity/wavelength, chemiresistive, weight or color, etc.). Supramolecular interaction between benzene molecules and the host framework, aperture size/shape and structural flexibility are influential factors in the performance of MOF-based sensors. Therefore, enhancing the host-guest interactions between the host framework and benzene molecules, or regulating the diffusion rate of benzene molecules by changing the aperture size/shape and flexibility of the host framework to enhance the detection signal are effective strategies for constructing MOF-based sensors. This concept highlights several types of MOF-based sensors for the detection of benzene vapor.

16.
iScience ; 27(2): 108766, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38318355

ABSTRACT

Vascular calcification (VC) is recognized as a crucial risk factor for cardiovascular diseases. Our previous report revealed that the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) plays a role in this process. However, the underlying molecular mechanisms remain elusive. Notably, receptor-interacting protein kinase 1 (RIPK1) has been implicated in the development of cardiovascular diseases, yet its role and mechanisms in VC remain unexplored. To address this gap, we established models using chronic kidney disease mice and calcifying VSMCs to investigate the impact of RIPK1 on VC. Subsequently, a RIPK1-specific inhibitor (NEC-1) was applied in both in vitro and in vivo models. Our findings indicate significant activation of RIPK1 in calcified human arterial tissue, as well as in animal and cellular models. RIPK1 activation promotes the osteogenic transdifferentiation of VSMCs. Treatment with the NEC-1 substantially reduced VC. These results demonstrate that RIPK1 is a target for preventing VC.

17.
Drug Resist Updat ; 73: 101052, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262246

ABSTRACT

AIMS: This investigation aims to elucidate the mechanism underlying sorafenib-induced ferroptosis in hepatocellular carcinoma (HCC). METHODS: The role of dual specificity phosphatase 4 (DUSP4) in sorafenib-treated HCC was investigated using comprehensive assessments both in vitro and in vivo, including Western blotting, qRT-PCR, cell viability assay, lipid reactive oxygen species (ROS) assay, immunohistochemistry, and xenograft tumor mouse model. Additionally, label-free quantitative proteomics was employed to identify potential proteins associated with DUSP4. RESULTS: Our study revealed that suppression of DUSP4 expression heightens the susceptibility of HCC cells to ferroptosis inducers, specifically sorafenib and erastin, in both in vitro and in vivo settings. Furthermore, we identified DUSP4-mediated regulation of key ferroptosis-related markers, such as ferritin light chain (FTL) and ferritin heavy chain 1 (FTH1). Notably, label-free quantitative proteomics unveiled the phosphorylation of threonine residue T148 on YTH Domain Containing 1 (YTHDC1) by DUSP4. Further investigations unraveled that YTHDC1, functioning as an mRNA nuclear export regulator, is a direct target of DUSP4, orchestrating the subcellular localization of FTL and FTH1 mRNAs. Significantly, our study highlights a strong correlation between elevated DUSP4 expression and sorafenib resistance in HCC. CONCLUSIONS: Our findings introduce DUSP4 as a negative regulator of sorafenib-induced ferroptosis. This discovery opens new avenues for the development of ferroptosis-based therapeutic strategies tailored for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Sorafenib/pharmacology , Sorafenib/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Phosphoric Monoester Hydrolases/therapeutic use , Ferroptosis/genetics , Cell Line, Tumor
18.
Cell Rep ; 43(1): 113654, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38175757

ABSTRACT

Deficiency of DNA repair pathways drives the development of colorectal cancer. However, the role of the base excision repair (BER) pathway in colorectal cancer initiation remains unclear. This study shows that Nei-like DNA glycosylase 1 (NEIL1) is highly expressed in colorectal cancer (CRC) tissues and associated with poorer clinical outcomes. Knocking out neil1 in mice markedly suppresses tumorigenesis and enhances infiltration of CD8+ T cells in intestinal tumors. Furthermore, NEIL1 directly forms a complex with SATB2/c-Myc to enhance the transcription of COL17A1 and subsequently promotes the production of immunosuppressive cytokines in CRC cells. A NEIL1 peptide suppresses intestinal tumorigenesis in ApcMin/+ mice, and targeting NEIL1 demonstrates a synergistic suppressive effect on tumor growth when combined with a nuclear factor κB (NF-κB) inhibitor. These results suggest that combined targeting of NEIL1 and NF-κB may represent a promising strategy for CRC therapy.


Subject(s)
Colorectal Neoplasms , DNA Glycosylases , Animals , Mice , Carcinogenesis , CD8-Positive T-Lymphocytes/metabolism , Colorectal Neoplasms/genetics , DNA Glycosylases/metabolism , DNA Repair , NF-kappa B/metabolism
19.
J Adv Nurs ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38294134

ABSTRACT

AIMS: Diabetes has been indicated to be a risk factor for suicide. We aim to estimate the prevalence of suicide in patients with diabetes. DESIGN: A meta-analysis using PRISMA methodology was adopted to examine the incidence of suicide in diabetic patients. DATA SOURCES: From inception to October 2022, three online databases (PubMed, China National Knowledge Infrastructure and Web of Science) were used to search studies. REVIEW METHODS: We used random-effects model to analysis. And our primary outcome was the incidence of suicide death per 100 person-years, and other outcomes were prevalence of suicidal ideation and suicide attempt. To explore the sources of heterogeneity in our study, we performed subgroup and meta-regression analyses. RESULTS: The suicide death rate in diabetic patients was 0.027 per 100 person-years, with a higher rate for Type 1 Diabetes Mellitus compared to Type 2 Diabetes Mellitus. The prevalence of suicidal ideation in diabetes patients was 0.175, with a higher prevalence in Type 1 Diabetes Mellitus compared to Type 2 Diabetes Mellitus. The prevalence of suicide attempts in diabetes patients was 0.033, indicating a higher rate for Type 2 Diabetes Mellitus compared to Type 1 Diabetes Mellitus. CONCLUSIONS: The results indicate a high rate of suicide among people with diabetes, and this study identifies populations and regions at high risk for suicide. Our review emphasizes interventions in mental health and the improvement of suicide prevention programmes. IMPACT: The study investigated suicide death, suicidal ideation and suicide attempt in diabetic individuals. Suicide rates are elevated among diabetic patients, and various patient groups face distinct suicide risks. It is important to prioritize the mental well-being of diabetic individuals and enhance interventions, including personalized approaches, to inform public health efforts aimed at preventing and addressing suicide among diabetic patients. PATIENT OR PUBLIC CONTRIBUTION: No patient or public involvement.

20.
Int Microbiol ; 27(2): 535-544, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37505307

ABSTRACT

Cajaninstilbene acid (CSA), longistylin A (LLA), and longistylin C (LLC) are three characteristic stilbenes isolated from pigeon pea. The objective of this study was to evaluate the antibacterial activity of these stilbenes against Staphylococcus aureus and even methicillin-resistant Staphylococcus aureus (MRSA) and test the possibility of inhibiting biofilm formation. The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of these stilbenes were evaluated. And the results showed that LLA was most effective against tested strains with MIC and MBC values of 1.56 µg/mL followed by LLC with MIC and MBC values of 3.12 µg/mL and 6.25 µg/mL as well as CSA with MIC and MBC values of 6.25 µg/mL and 6.25-12.5 µg/mL. Through growth curve and cytotoxicity analysis, the concentrations of these stilbenes were determined to be set at their respective 1/4 MIC in the follow-up research. In an anti-biofilm formation assay, these stilbenes were found to be effectively inhibited bacterial proliferation, biofilm formation, and key gene expressions related to the adhesion and virulence of MRSA. It is the first time that the anti-S. aureus and MRSA activities of the three stilbenes have been systematically reported. Conclusively, these findings provide insight into the anti-MRSA mechanism of stilbenes from pigeon pea, indicating these compounds may be used as antimicrobial agents or additives for food with health functions, and contribute to the development as well as application of pigeon pea in food science.


Subject(s)
Cajanus , Methicillin-Resistant Staphylococcus aureus , Stilbenes , Anti-Bacterial Agents/pharmacology , Stilbenes/pharmacology , Microbial Sensitivity Tests , Antibodies/pharmacology , Biofilms
SELECTION OF CITATIONS
SEARCH DETAIL