Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.427
1.
Clin Transl Sci ; 17(6): e13825, 2024 Jun.
Article En | MEDLINE | ID: mdl-38808543

Mosunetuzumab (Mosun) is a CD20xCD3 T-cell engaging bispecific antibody that redirects T cells to eliminate malignant B cells. The approved step-up dose regimen of 1/2/60/30 mg IV is designed to mitigate cytokine release syndrome (CRS) and maximize efficacy in early cycles. A population pharmacokinetic (popPK) model was developed from 439 patients with relapsed/refractory B-Cell Non-Hodgkin lymphoma receiving Mosun IV monotherapy, including fixed dosing (0.05-2.8 mg IV every 3 weeks (q3w)) and Cycle 1 step-up dosing groups (0.4/1/2.8-1/2/60/30 mg IV q3w). Prior to Mosun treatment, ~50% of patients had residual levels of anti-CD20 drugs (e.g., rituximab or obinutuzumab) from prior treatment. CD20 receptor binding dynamics and rituximab/obinutuzumab PK were incorporated into the model to calculate the Mosun CD20 receptor occupancy percentage (RO%) over time. A two-compartment model with time-dependent clearance (CL) best described the data. The typical patient had an initial CL of 1.08 L/day, transitioning to a steady-state CL of 0.584 L/day. Statistically relevant covariates on PK parameters included body weight, albumin, sex, tumor burden, and baseline anti-CD20 drug concentration; no covariate was found to have a clinically relevant impact on exposure at the approved dose. Mosun CD20 RO% was highly variable, attributed to the large variability in residual baseline anti-CD20 drug concentration (median = 10 µg/mL). The 60 mg loading doses increased Mosun CD20 RO% in Cycle 1, providing efficacious exposures in the presence of the competing anti-CD20 drugs. PopPK model simulations, investigating Mosun dose delays, informed treatment resumption protocols to ensure CRS mitigation.


Antibodies, Bispecific , Antigens, CD20 , Lymphoma, B-Cell , Humans , Antigens, CD20/immunology , Antigens, CD20/metabolism , Middle Aged , Male , Aged , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/immunology , Female , Adult , Antibodies, Bispecific/pharmacokinetics , Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/immunology , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/administration & dosage , Aged, 80 and over , Models, Biological , Antineoplastic Agents, Immunological/pharmacokinetics , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/therapeutic use , Young Adult , Dose-Response Relationship, Drug , Drug Administration Schedule , Rituximab/pharmacokinetics , Rituximab/administration & dosage
2.
Biomolecules ; 14(5)2024 May 12.
Article En | MEDLINE | ID: mdl-38785979

The balance between ubiquitination and deubiquitination is instrumental in the regulation of protein stability and maintenance of cellular homeostasis. The deubiquitinating enzyme, ubiquitin-specific protease 36 (USP36), a member of the USP family, plays a crucial role in this dynamic equilibrium by hydrolyzing and removing ubiquitin chains from target proteins and facilitating their proteasome-dependent degradation. The multifaceted functions of USP36 have been implicated in various disease processes, including cancer, infections, and inflammation, via the modulation of numerous cellular events, including gene transcription regulation, cell cycle regulation, immune responses, signal transduction, tumor growth, and inflammatory processes. The objective of this review is to provide a comprehensive summary of the current state of research on the roles of USP36 in different pathological conditions. By synthesizing the findings from previous studies, we have aimed to increase our understanding of the mechanisms underlying these diseases and identify potential therapeutic targets for their treatment.


Neoplasms , Ubiquitin Thiolesterase , Humans , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/enzymology , Neoplasms/pathology , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Animals , Ubiquitination , Inflammation/metabolism , Signal Transduction , Ubiquitin/metabolism
3.
Bioorg Chem ; 148: 107463, 2024 May 19.
Article En | MEDLINE | ID: mdl-38776649

Thrombosis leads to elevated mortality rates and substantial medical expenses worldwide. Human factor IXa (HFIXa) protease is pivotal in tissue factor (TF)-mediated thrombin generation, and represents a promising target for anticoagulant therapy. We herein isolated novel DNA aptamers that specifically bind to HFIXa through systematic evolution of ligands by exponential enrichment (SELEX) method. We identified two distinct aptamers, seq 5 and seq 11, which demonstrated high binding affinity to HFIXa (Kd = 74.07 ± 2.53 nM, and 4.93 ± 0.15 nM, respectively). Computer software was used for conformational simulation and kinetic analysis of DNA aptamers and HFIXa binding. These aptamers dose-dependently prolonged activated partial thromboplastin time (aPTT) in plasma. We further rationally optimized the aptamers by truncation and site-directed mutation, and generated the truncated forms (Seq 5-1t, Seq 11-1t) and truncated-mutated forms (Seq 5-2tm, Seq 11-2tm). They also showed good anticoagulant effects. The rationally and structurally designed antidotes (seq 5-2b and seq 11-2b) were competitively bound to the DNA aptamers and effectively reversed the anticoagulant effect. This strategy provides DNA aptamer drug-antidote pair with effective anticoagulation and rapid reversal, developing advanced therapies by safe, regulatable aptamer drug-antidote pair.

4.
J Agric Food Chem ; 2024 May 22.
Article En | MEDLINE | ID: mdl-38778434

Polysaccharides derived from Agrocybe cylindracea have been demonstrated to exhibit various bioactivities. However, studies on their structural characteristics during the growth process are limited. This study aimed to compare the physicochemical properties and structural characteristics of alkali-extracted polysaccharides from A. cylindracea fruiting bodies (JACP) across four growth stages. Results showed that the extraction yields and protein levels of JACP declined along with the growth of A. cylindracea, while the contents of neutral sugar and glucose increased significantly. However, JACP exhibited structural characteristics similar to those across the four stages. Four polysaccharide subfractions were isolated from each growth stage, including JACP-Et30, JACP-Et50, JACP-Et60, and JACP-Et70. JACP-Et30 from the four stages and JACP-Et50 from the initial three stages were identified as heteroglucans with ß-1,3-d-Glcp and ß-1,6-d-Glcp residues as main chains, respectively. However, other subfractions were considered as ß-1,6-d-glucans containing minor glucuronic acid. These subfractions were predominantly replaced by Glcp residues at the O-3 and O-6 positions. Overall, while JACP exhibited variable physicochemical properties, its structural characteristics remained stable during the growth process, offering new insights into its potential applications in the food and medicinal industries.

5.
Magn Reson Med ; 2024 May 22.
Article En | MEDLINE | ID: mdl-38778631

PURPOSE: QSM provides insight into healthy brain aging and neuropathologies such as multiple sclerosis (MS), traumatic brain injuries, brain tumors, and neurodegenerative diseases. Phase data for QSM are usually acquired from 3D gradient-echo (3D GRE) scans with long acquisition times that are detrimental to patient comfort and susceptible to patient motion. This is particularly true for scans requiring whole-brain coverage and submillimeter resolutions. In this work, we use a multishot 3D echo plannar imaging (3D EPI) sequence with shot-selective 2D CAIPIRIHANA to acquire high-resolution, whole-brain data for QSM with minimal distortion and blurring. METHODS: To test clinical viability, the 3D EPI sequence was used to image a cohort of MS patients at 1-mm isotropic resolution at 3 T. Additionally, 3D EPI data of healthy subjects were acquired at 1-mm, 0.78-mm, and 0.65-mm isotropic resolution with varying echo train lengths (ETLs) and compared with a reference 3D GRE acquisition. RESULTS: The appearance of the susceptibility maps and the susceptibility values for segmented regions of interest were comparable between 3D EPI and 3D GRE acquisitions for both healthy and MS participants. Additionally, all lesions visible in the MS patients on the 3D GRE susceptibility maps were also visible on the 3D EPI susceptibility maps. The interplay among acquisition time, resolution, echo train length, and the effect of distortion on the calculated susceptibility maps was investigated. CONCLUSION: We demonstrate that the 3D EPI sequence is capable of rapidly acquiring submillimeter resolutions and providing high-quality, clinically relevant susceptibility maps.

6.
J Med Virol ; 96(5): e29640, 2024 May.
Article En | MEDLINE | ID: mdl-38699969

After the termination of zero-COVID-19 policy, the populace in China has experienced both Omicron BA.5 and XBB waves. Considering the poor antibody responses and severe outcomes observed among the elderly following infection, we conducted a longitudinal investigation to examine the epidemiological characteristics and antibody kinetics among 107 boosted elderly participants following the Omicron BA.5 and XBB waves. We observed that 96 participants (89.7%) were infected with Omicron BA.5, while 59 (55.1%) participants were infected with Omicron XBB. Notably, 52 participants (48.6%) experienced dual infections of both Omicron BA.5 and XBB. The proportion of symptomatic cases appeared to decrease following the XBB wave (18.6%) compared to that after the BA.5 wave (59.3%). Omicron BA.5 breakthrough infection induced lower neutralizing antibody titers against XBB.1.5, BA.2.86, and JN.1, while reinfection with Omicron XBB broadened the antibody responses against all measured Omicron subvariants and may alleviate the wild type-vaccination induced immune imprinting. Boosted vaccination type and comorbidities were the significant factors associated with antibody responses. Updated vaccines based on emerging severe acute respiratory syndrome coronavirus 2 variants are needed to control the Coronavirus Disease 2019 pandemic in the elderly.


Antibodies, Neutralizing , Antibodies, Viral , Breakthrough Infections , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/prevention & control , COVID-19/epidemiology , China/epidemiology , Aged , Antibodies, Viral/blood , Male , Female , Antibodies, Neutralizing/blood , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Aged, 80 and over , Middle Aged , Longitudinal Studies , Vaccination
7.
Drugs R D ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38700808

BACKGROUND AND OBJECTIVES: Despite significant progress in biomedical research, the rate of success in oncology drug development remains inferior to that of other therapeutic fields. Mechanistic models provide comprehensive understanding of the therapeutic effects of drugs, which is crucial for designing effective clinical trials. This study was performed to acquire a better understanding of PI3K-AKT-TOR pathway modulation and preclinical to clinical translational bridging for a specific compound, apitolisib (PI3K/mTOR inhibitor), by developing integrated mechanistic models. METHODS: Integrated pharmacokinetic (PK)-pharmacodynamic (PD)-efficacy models were developed for xenografts bearing human renal cell adenocarcinoma and for patients with solid tumors (phase 1 studies) to characterize relationships between exposure of apitolisib, modulation of the phosphorylated Akt (pAkt) biomarker triggered by inhibition of the PI3K-AKT-mTOR pathway, and tumor response. RESULTS: Both clinical and preclinical integrated models show a steep sigmoid curve linking pAkt inhibition to tumor growth inhibition and quantified that a minimum of 35-45% pAkt modulation is required for tumor shrinkage in patients, based on platelet-rich plasma surrogate matrix and in xenografts based on tumor tissue matrix. Based on this relationship between targeted pAkt modulation and tumor shrinkage rate, it appeared that a constant pAkt inhibition of 61% and 65%, respectively, would be necessary to achieve tumor stasis in xenografts and patients. CONCLUSIONS: These results help when it comes to evaluating the translatability of the preclinical analysis to the clinical target, and provide information that will enhance the value of future preclinical translational dose-finding and dose-optimization studies to accelerate clinical drug development. TRIAL REGISTRY: ClinicalTrials.gov NCT00854152 and NCT00854126.

8.
Protein Sci ; 33(6): e5021, 2024 Jun.
Article En | MEDLINE | ID: mdl-38747394

While nickel-nitrilotriacetic acid (Ni-NTA) has greatly advanced recombinant protein purification, its limitations, including nonspecific binding and partial purification for certain proteins, highlight the necessity for additional purification such as size exclusion and ion exchange chromatography. However, specialized equipment such as FPLC is typically needed but not often available in many laboratories. Here, we show a novel method utilizing polyphosphate (polyP) for purifying proteins with histidine repeats via non-covalent interactions. Our study demonstrates that immobilized polyP efficiently binds to histidine-tagged proteins across a pH range of 5.5-7.5, maintaining binding efficacy even in the presence of reducing agent DTT and chelating agent EDTA. We carried out experiments of purifying various proteins from cell lysates and fractions post-Ni-NTA. Our results demonstrate that polyP resin is capable of further purification post-Ni-NTA without the need for specialized equipment and without compromising protein activity. This cost-effective and convenient method offers a viable approach as a complementary approach to Ni-NTA.


Histidine , Polyphosphates , Histidine/chemistry , Polyphosphates/chemistry , Polyphosphates/metabolism , Nitrilotriacetic Acid/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Humans , Proteins/chemistry , Proteins/isolation & purification
9.
Sci Rep ; 14(1): 10227, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702443

Hydrolyzed egg yolk peptide (YPEP) was shown to increase bone mineral density in ovariectomized rats. However, the underlying mechanism of YPEP on osteoporosis has not been explored. Recent studies have shown that Wnt/ß-catenin signaling pathway and gut microbiota may be involved in the regulation of bone metabolism and the progression of osteoporosis. The present study aimed to explore the preventive effect of the YPEP supplementation on osteoporosis in ovariectomized (OVX) rats and to verify whether YPEP can improve osteoporosis by regulating Wnt/ß-catenin signaling pathway and gut microbiota. The experiment included five groups: sham surgery group (SHAM), ovariectomy group (OVX), 17-ß estradiol group (E2: 25 µg /kg/d 17ß-estradiol), OVX with low-dose YPEP group (LYPEP: 10 mg /kg/d YPEP) and OVX with high-dose YPEP group (HYPEP: 40 mg /kg/d YPEP). In this study, all the bone samples used were femurs. Micro-CT analysis revealed improvements in both bone mineral density (BMD) and microstructure by YPEP treatment. The three-point mechanical bending test indicated an enhancement in the biomechanical properties of the YPEP groups. The serum levels of bone alkaline phosphatase (BALP), bone gla protein (BGP), calcium (Ca), and phosphorus (P) were markedly higher in the YPEP groups than in the OVX group. The LYPEP group had markedly lower levels of alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) and C-terminal telopeptide of type I collagen (CTX-I) than the OVX group. The YPEP groups had significantly higher protein levels of the Wnt3a, ß-catenin, LRP5, RUNX2 and OPG of the Wnt/ß-catenin signaling pathway compared with the OVX group. Compared to the OVX group, the ratio of OPG/RANKL was markedly higher in the LYPEP group. At the genus level, there was a significantly increase in relative abundance of Lachnospiraceae_NK4A136_group and a decrease in Escherichia_Shigella in YPEP groups, compared with the OVX group. However, in the correlation analysis, there was no correlation between these two bacteria and bone metabolism and microstructure indexes. These findings demonstrate that YPEP has the potential to improve osteoporosis, and the mechanism may be associated with its modulating effect on Wnt/ß-catenin signaling pathway.


Bone Density , Osteoporosis , Ovariectomy , Wnt Signaling Pathway , Animals , Female , Rats , Alkaline Phosphatase/metabolism , beta Catenin/metabolism , Bone Density/drug effects , Egg Proteins/pharmacology , Egg Proteins/metabolism , Egg Yolk/chemistry , Egg Yolk/metabolism , Femur/drug effects , Femur/metabolism , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Osteoporosis/prevention & control , Osteoporosis/metabolism , Peptides/pharmacology , Rats, Sprague-Dawley , Wnt Signaling Pathway/drug effects , X-Ray Microtomography
10.
Asia Pac J Clin Nutr ; 33(2): 184-193, 2024 Jun.
Article En | MEDLINE | ID: mdl-38794978

BACKGROUND AND OBJECTIVES: This study aimed to assess the associations of maternal iron status and placental iron transport proteins expression with the risk of pre-eclampsia (PE) in Chinese pregnant women. METHODS AND STUDY DESIGN: A total of 94 subjects with PE and 112 healthy pregnant women were enrolled. Fasting blood samples were collected to detect maternal iron status. The placenta samples were collected at delivery to detect the mRNA and protein expression of divalent metal transporter 1 (DMT1) and ferroportin-1 (FPN1). Logistic analysis was used to explore the associations of maternal iron status with PE risk. The associations of placental iron transport proteins with maternal iron status were explored. RESULTS: After adjusting for covariates, dietary total iron, non-heme iron intake and serum hepcidin were negatively associated with PE, with adjusted ORs (95%CIs) were 0.40 (0.17, 0.91), 0.42 (0.18, 0.94) and 0.02 (0.002, 0.13) for the highest versus lowest tertile, respectively. For the highest tertile versus lowest tertile, serum iron (4.08 (1.58, 10.57)) and ferritin (5.61 (2.36, 13.31)) were positively associated with PE. The mRNA expressions and protein levels of DMT1 and FPN1 in placenta were up-regulated in the PE group (p < 0.05). The mRNA expressions of DMT1 and FPN1 in placenta showed a negative correlation with the serum hepcidin (r = -0.71, p < 0.001; r = -0.49, p < 0.05). CONCLUSIONS: In conclusion, the maternal iron status were closely associated with PE risk, placental DMT1 and FPN1 were upregulated in PE which may be a promising target for the prevention of PE.


Cation Transport Proteins , Iron , Placenta , Pre-Eclampsia , Humans , Female , Pregnancy , Pre-Eclampsia/epidemiology , Pre-Eclampsia/blood , Case-Control Studies , Adult , Iron/blood , Iron/metabolism , Placenta/metabolism , Cation Transport Proteins/genetics , Hepcidins/blood , Risk Factors , China/epidemiology , Nutritional Status
11.
Mol Pain ; : 17448069241260349, 2024 May 25.
Article En | MEDLINE | ID: mdl-38795338

Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disease characterized by chronic visceral pain with a complex etiology and challenging treatment. Although accumulating evidence supports the involvement of central nervous system sensitization in the development of visceral pain, the precise molecular mechanisms remain incompletely understood. In this study, we highlight the critical regulatory role of lysine-specific demethylase 6B (KDM6B) in the anterior cingulate cortex (ACC) in chronic visceral pain. To simulate clinical IBS conditions, we utilized the neonatal maternal deprivation (NMD) mouse model. Our results demonstrated that NMD induced chronic visceral pain and anxiety-like behaviors in mice. Notably, the protein expression level of KDM6B significantly increased in the ACC of NMD mice, leading to a reduction in the expression level of H32K7me3. Immunofluorescence staining revealed that KDM6B primarily co-localizes with neurons in the ACC, with minimal presence in microglia and astrocytes. Injecting GSK-J4 (a KDM6B-specific inhibitor) into ACC of NMD mice, resulted in a significant alleviation in chronic visceral pain and anxiety-like behaviors, as well as a remarkable reduction in NR2B expression level. ChIP assay further indicated that KDM6B regulates NR2B expression by influencing the demethylation of H3K27me3. In summary, our findings underscore the critical role of KDM6B in regulating chronic visceral pain and anxiety-like behaviors in NMD mice. These insights provide a basis for further understanding the molecular pathways involved in IBS and may pave the way for targeted therapeutic interventions.

12.
Foods ; 13(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38790862

Every year, a significant amount of pepper stalks are wasted due to low utilization. The ash produced from pepper stalks contains a significant amount of alkaline salts, which are food additives that can enhance the quality of noodles. Therefore, utilizing natural pepper straw ash to improve the quality of noodles shows promising development prospects. In this study, pepper straw ash leachate (PSAL) was extracted and added to noodles. The quality of the noodles gradually improved with the addition of PSAL, with the best effect observed at a concentration of 18% (PSAL mass/flour mass). This addition resulted in a 57.8% increase in noodle hardness, a 55.43% increase in chewiness, a 19.41% rise in water absorption rate, and a 13.28% increase in disulfide bond content. These alterations rendered the noodles more resilient during cooking, reducing their tendency to soften and thus enhancing chewiness and palatability. Incorporating PSAL also reduced cooking loss by 57.79%. Free sulfhydryl groups decreased by 5.1%, and scanning electron microscopy revealed a denser gluten network structure in the noodles, with more complete starch wrapping. This study significantly enhanced noodle quality and provided a new pathway for the application of pepper straw resources in the food industry.

13.
J Am Coll Cardiol ; 83(18): 1743-1755, 2024 May 07.
Article En | MEDLINE | ID: mdl-38692827

BACKGROUND: Lipoprotein(a) (Lp[a]) is associated with an increased risk of myocardial infarction (MI). However, the mechanism underlying this association has yet to be fully elucidated. OBJECTIVES: This multicenter study aimed to investigate whether association between Lp(a) and MI risk is reinforced by the presence of low-attenuation plaque (LAP) identified by coronary computed tomography angiography (CCTA). METHODS: In a derivation cohort, a total of 5,607 patients with stable chest pain suspected of coronary artery disease who underwent CCTA and Lp(a) measurement were prospectively enrolled. In validation cohort, 1,122 patients were retrospectively collected during the same period. High Lp(a) was defined as Lp(a) ≥50 mg/dL. The primary endpoint was a composite of time to fatal or nonfatal MI. Associations were estimated using multivariable Cox proportional hazard models. RESULTS: During a median follow-up of 8.2 years (Q1-Q3: 7.2-9.3 years), the elevated Lp(a) levels were associated with MI risk (adjusted HR [aHR]: 1.91; 95% CI: 1.46-2.49; P < 0.001). There was a significant interaction between Lp(a) and LAP (Pinteraction <0.001) in relation to MI risk. When stratified by the presence or absence of LAP, Lp(a) was associated with MI in patients with LAP (aHR: 3.03; 95% CI: 1.92-4.76; P < 0.001). Mediation analysis revealed that LAP mediated 73.3% (P < 0.001) for the relationship between Lp(a) and MI. The principal findings remained unchanged in the validation cohort. CONCLUSIONS: Elevated Lp(a) augmented the risk of MI during 8 years of follow-up, especially in patients with LAP identified by CCTA. The presence of LAP could reinforce the relationship between Lp(a) and future MI occurrence.


Computed Tomography Angiography , Lipoprotein(a) , Myocardial Infarction , Plaque, Atherosclerotic , Humans , Male , Female , Lipoprotein(a)/blood , Myocardial Infarction/blood , Myocardial Infarction/epidemiology , Middle Aged , Plaque, Atherosclerotic/blood , Plaque, Atherosclerotic/diagnostic imaging , Aged , Coronary Angiography , Retrospective Studies , Coronary Artery Disease/blood , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Prospective Studies , Follow-Up Studies , Biomarkers/blood
14.
J Ethnopharmacol ; 330: 118224, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38642623

ETHNOPHARMACOLOGICAL RELEVANCE: Sophorae tonkinensis Radix et Rhizoma (STR) is an extensively applied traditional Chinese medicine (TCM) in southwest China. However, its clinical application is relatively limited due to its hepatotoxicity effects. AIM OF THE STUDY: To understand the material foundation and liver injury mechanism of STR. MATERIALS AND METHODS: Chemical compositions in STR and its prototypes in mice were profiled by ultra-performance liquid chromatography coupled quadrupole-time of flight mass spectrometry (UPLC-Q/TOF MS). STR-induced liver injury (SILI) was comprehensively evaluated by STR-treated mice mode. The histopathologic and biochemical analyses were performed to evaluate liver injury levels. Subsequently, network pharmacology and multi-omics were used to analyze the potential mechanism of SILI in vivo. And the target genes were further verified by Western blot. RESULTS: A total of 152 compounds were identified or tentatively characterized in STR, including 29 alkaloids, 21 organic acids, 75 flavonoids, 1 quinone, and 26 other types. Among them, 19 components were presented in STR-medicated serum. The histopathologic and biochemical analysis revealed that hepatic injury occurred after 4 weeks of intragastric administration of STR. Network pharmacology analysis revealed that IL6, TNF, STAT3, etc. were the main core targets, and the bile secretion might play a key role in SILI. The metabolic pathways such as taurine and hypotaurine metabolism, purine metabolism, and vitamin B6 metabolism were identified in the STR exposed groups. Among them, taurine, hypotaurine, hypoxanthine, pyridoxal, and 4-pyridoxate were selected based on their high impact value and potential biological function in the process of liver injury post STR treatment. CONCLUSIONS: The mechanism and material foundation of SILI were revealed and profiled by a multi-omics strategy combined with network pharmacology and chemical profiling. Meanwhile, new insights were taken into understand the pathological mechanism of SILI.


Chemical and Drug Induced Liver Injury , Drugs, Chinese Herbal , Rhizome , Animals , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Mice , Male , Drugs, Chinese Herbal/pharmacology , Sophora/chemistry , Liver/drug effects , Liver/pathology , Liver/metabolism , Metabolomics , Chromatography, High Pressure Liquid , Network Pharmacology , Multiomics , Animals, Outbred Strains
15.
Nat Commun ; 15(1): 3238, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622117

Great efforts are being made to develop advanced polygenic risk scores (PRS) to improve the prediction of complex traits and diseases. However, most existing PRS are primarily trained on European ancestry populations, limiting their transferability to non-European populations. In this article, we propose a novel method for generating multi-ancestry Polygenic Risk scOres based on enSemble of PEnalized Regression models (PROSPER). PROSPER integrates genome-wide association studies (GWAS) summary statistics from diverse populations to develop ancestry-specific PRS with improved predictive power for minority populations. The method uses a combination of L 1 (lasso) and L 2 (ridge) penalty functions, a parsimonious specification of the penalty parameters across populations, and an ensemble step to combine PRS generated across different penalty parameters. We evaluate the performance of PROSPER and other existing methods on large-scale simulated and real datasets, including those from 23andMe Inc., the Global Lipids Genetics Consortium, and All of Us. Results show that PROSPER can substantially improve multi-ancestry polygenic prediction compared to alternative methods across a wide variety of genetic architectures. In real data analyses, for example, PROSPER increased out-of-sample prediction R2 for continuous traits by an average of 70% compared to a state-of-the-art Bayesian method (PRS-CSx) in the African ancestry population. Further, PROSPER is computationally highly scalable for the analysis of large SNP contents and many diverse populations.


Genome-Wide Association Study , Population Health , Humans , Bayes Theorem , Multifactorial Inheritance/genetics , Black People/genetics , Genetic Risk Score , Risk Factors
16.
Ecotoxicol Environ Saf ; 276: 116334, 2024 May.
Article En | MEDLINE | ID: mdl-38626607

Thioacetamide (TAA) within the liver generates hepatotoxic metabolites that can be induce hepatic fibrosis, similar to the clinical pathological features of chronic human liver disease. The potential protective effect of Albiflorin (ALB), a monoterpenoid glycoside found in Paeonia lactiflora Pall, against hepatic fibrosis was investigated. The mouse hepatic fibrosis model was induced with an intraperitoneal injection of TAA. Hepatic stellate cells (HSCs) were subjected to treatment with transforming growth factor-beta (TGF-ß), while lipopolysaccharide/adenosine triphosphate (LPS/ATP) was added to stimulate mouse peritoneal macrophages (MPMs), leading to the acquisition of conditioned medium. For TAA-treated mice, ALB reduced ALT, AST, HYP levels in serum or liver. The administration of ALB reduced histopathological abnormalities, and significantly regulated the expressions of nuclear receptor-related 1 protein (NURR1) and the P2X purinoceptor 7 receptor (P2×7r) in liver. ALB could suppress HSCs epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) deposition, and pro-inflammatory factor level. ALB also remarkably up-regulated NURR1, inhibited P2×7r signaling pathway, and worked as working as C-DIM12, a NURR1 agonist. Moreover, deficiency of NURR1 in activated HSCs and Kupffer cells weakened the regulatory effect of ALB on P2×7r inhibition. NURR1-mediated inhibition of inflammatory contributed to the regulation of ALB ameliorates TAA-induced hepatic fibrosis, especially based on involving in the crosstalk of HSCs-macrophage. Therefore, ALB plays a significant part in the mitigation of TAA-induced hepatotoxicity this highlights the potential of ALB as a protective intervention for hepatic fibrosis.


Hepatic Stellate Cells , Liver Cirrhosis , Nuclear Receptor Subfamily 4, Group A, Member 2 , Signal Transduction , Thioacetamide , Animals , Thioacetamide/toxicity , Hepatic Stellate Cells/drug effects , Mice , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Signal Transduction/drug effects , Male , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Bridged-Ring Compounds/pharmacology , Mice, Inbred C57BL , Inflammation/chemically induced , Inflammation/drug therapy , Epithelial-Mesenchymal Transition/drug effects
17.
Bioorg Chem ; 147: 107400, 2024 Jun.
Article En | MEDLINE | ID: mdl-38688196

Although certain members of the Ubiquitin-specific peptidases (USPs) have been recognized as promising therapeutic targets for various diseases, research progress regarding USP21 has been relatively sluggish in its early stages. USP21 is a crucial member of the USPs subfamily, involved in diverse cellular processes such as apoptosis, DNA repair, and signal transduction. Research findings from the past decade demonstrate that USP21 mediates the deubiquitination of multiple well-known target proteins associated with critical cellular processes relevant to both disease and homeostasis, particularly in various cancers.This reviewcomprehensively summarizes the structure and biological functions of USP21 with an emphasis on its role in tumorigenesis, and elucidates the advances on the discovery of tens of small-molecule inhibitors targeting USP21, which suggests that targeting USP21 may represent a potential strategy for cancer therapy.


Neoplasms , Ubiquitin Thiolesterase , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Animals , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Molecular Structure
18.
Int J Biol Macromol ; 269(Pt 1): 131799, 2024 Jun.
Article En | MEDLINE | ID: mdl-38677677

Polysaccharides are the important bioactive macromolecules in Agrocybe cylindracea, but their changes are as yet elusive during developmental process. This study investigated the dynamic changes of polysaccharides from A. cylindracea fruiting body water extract at four developmental stages and its structure characteristics. Results revealed that the polysaccharides from A. cylindracea water extract significantly increased at the pileus expansion stage and the increased fraction could be α-glucan. The further purification and identification indicated that this α-glucan was a glycogen. It had typical morphology of ß particles with a molecular weight of 1375 kDa. Its backbone comprised α-D-(1 â†’ 4)-Glcp and α-D-(1 â†’ 4,6)-Glcp residues at a ratio of 5:1, terminated by α-D-Glcp residue. Rheological behavior suggested that it was a Newtonian fluid at the concentration of 1 %. In addition, despite both the glycogen and natural starch were composed of D-glucose, they exhibited the entirely distinct Maltese cross characteristic and unique crystalline structure. This study is the first to demonstrate the presence of abundant glycogen in the pileus expansion stage of A. cylindracea, which provides new insights on the change patterns of fungal polysaccharides.


Agrocybe , Glucans , Water , Glucans/chemistry , Water/chemistry , Agrocybe/chemistry , Molecular Weight , Glycogen/metabolism , Glycogen/chemistry , Fruiting Bodies, Fungal/chemistry , Rheology
19.
Phytochemistry ; 222: 114096, 2024 Jun.
Article En | MEDLINE | ID: mdl-38641141

Forsythiae Fructus (FF), the dried fruit of F. suspensa, is commonly used to treat fever, inflammation, etc in China or other Asian countries. FF is usually used as the core herb in traditional Chinese medicine preparations for the treatment of influenza, such as Shuang-huang-lian oral liquid and Yin-qiao powder, etc. Since the wide application and core role of FF, its research progress was summarized in terms of traditional uses, phytochemistry, pharmacology, pharmacokinetics, quality control, and toxicity. Meanwhile, the anti-influenza substances and mechanism of FF were emphasized. Till now, a total of 290 chemical components are identified in F. suspensa, and among them, 248 components were isolated and identified from FF, including 42 phenylethanoid glycosides, 48 lignans, 59 terpenoids, 14 flavonoids, 3 steroids, 24 cyclohexyl ethanol derivatives, 14 alkaloids, 26 organic acids, and 18 other types. FF and their pure compounds have the pharmacological activities of anti-virus, anti-inflammation, anti-oxidant, anti-bacteria, anti-tumor, neuroprotection, hepatoprotection, etc. Inhibition of TLR7, RIG-I, MAVS, NF-κB, MyD88 signaling pathway were the reported anti-influenza mechanisms of FF and phenylethanoid glycosides and lignans are the main active groups. However, the bioavailability of phenylethanoid glycosides and lignans of FF in vivo was low, which needed to be improved. Simultaneously, the un-elucidated compounds and anti-influenza substances of FF strongly needed to be explored. The current quality control of FF was only about forsythoside A and phillyrin, more active components should be taken into consideration. Moreover, there are no reports of toxicity of FF yet, but the toxicity of FF should be not neglected in clinical applications.


Forsythia , Quality Control , Forsythia/chemistry , Humans , Fruit/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/isolation & purification , Animals , Molecular Structure
20.
Dev Cell ; 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38582082

The commitment and differentiation of human placental progenitor cytotrophoblast (CT) cells are crucial for a successful pregnancy, but the underlying mechanism remains poorly understood. Here, we identified the transcription factor (TF), specificity protein 6 (SP6), as a human species-specific trophoblast lineage TF expressed in human placental CT cells. Using pluripotent stem cells as a model, we demonstrated that SP6 controls CT generation and the establishment of trophoblast stem cells (TSCs) and identified msh homeobox 2 (MSX2) as the downstream effector in these events. Mechanistically, we showed that SP6 interacts with histone acetyltransferase P300 to alter the landscape of H3K27ac at targeted regulatory elements, thereby favoring transcriptional activation and facilitating CT cell fate decisions and TSC maintenance. Our results established SP6 as a regulator of the human trophoblast lineage and implied its role in placental development and the pathogenies of placental diseases.

...