Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.382
Filter
1.
Plant Signal Behav ; 19(1): 2399429, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-39229864

ABSTRACT

Currently, applying lime to cadmium (Cd)-contaminated paddy fields to increase pH and reduce Cd availability is an effective method to control excessive Cd levels in rice grain. However, under hydroponic conditions, the impact of increased pH on Cd accumulation in different rice varieties remains unclear. This study employed three rice varieties (Yuzhenxiang, Shaoxiang 100, Xiangwanxian 12) with different Cd accumulation characteristics under different pH and long-term treatment with 1 µM CdCl2, to study the effect of pH on growth and Cd accumulation in different rice varieties. The result showed that as pH shifted from 5 to 8, the SPAD values, shoot dry weight, and plant height of the three rice varieties significantly decreased. The main root length, root volume, and root dry weight of Yuzhenxiang, and Shaoxiang100 significantly decreased. Conversely, the root architecture indicators of Xiangwanxian 12 did not change significantly. As for element accumulation, increasing the pH significantly increased the content of Mn in both the shoots and roots of all three varieties. Yuzhenxiang significantly reduced Cd content in both the shoots and roots of rice, while Shaoxiang100 significantly increased Cd content in both parts. Xiangwanxian 12 showed a significant increase in Cd content in the shoots but a decrease in the roots. In terms of subcellular distribution, Yuzhenxiang significantly reduced Cd concentrations in the cell wall and organelles of root cells, resulting in lower Cd concentrations in the root tissue. Conversely, Shaoxiang100 significantly increased Cd concentrations in the cell wall, organelles, and soluble fractions of root cells, leading to higher Cd concentrations in the root tissue. Xiangwanxian 12 also exhibited a decrease in Cd concentrations in the cell wall, organelles, and soluble fraction of root cells, resulting in lower Cd concentrations in the root tissue. Additionally, the expression of the OsNRAMP5 and OsHMA3 gene was significantly increased in Shaoxiang 100, while no significantly change in Yuzhenxiang and Xiangwanxian 12. These results provide important guidance on the impact of pH on Cd accumulation during the vegetative growth stage of different rice varieties.


Subject(s)
Cadmium , Hydroponics , Oryza , Plant Roots , Oryza/metabolism , Oryza/growth & development , Oryza/drug effects , Cadmium/metabolism , Hydrogen-Ion Concentration , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Plant Shoots/metabolism , Plant Shoots/growth & development , Plant Shoots/drug effects
2.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1866-1876, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39233416

ABSTRACT

The lower limit temperature in the crop water stress index (CWSI) model refers to the canopy temperature (Tc) or the canopy-air temperature differences (dT) under well-watered conditions, which has significant impacts on the accuracy of the model in quantifying plant water status. At present, the direct estimation of lower limit temperature based on data-driven method has been successfully used in crops, but its applicability has not been tes-ted in forest ecosystems. We collected continuously and synchronously Tc and meteorological data in a Quercus variabilis plantation at the southern foot of Taihang Mountain to evaluate the feasibility of multiple linear regression model and BP neural network model for estimating the lower limit temperature and the accuracy of the CWSI indicating water status of the plantation. The results showed that, in the forest ecosystem without irrigation conditions, the lower limit temperature could be obtained by setting soil moisture as saturation in the multiple linear regression mo-del and the BP neural network model with soil water content, wind speed, net radiation, vapor pressure deficit and air temperature as input parameters. Combining the lower limit temperature and the upper limit temperature determined by the theoretical equation to normalize the measured Tc and dT could realize the non-destructive, rapid, and automatic diagnosis of the water status of Q. variabilis plantation. Among them, the CWSI obtained by combining the lower limit temperature determined by the dT under well-watered condition calculated by the BP neural network model and the upper limit temperature was the most suitable for accurate monitoring water status of the plantation. The coefficient of determination, root mean square error, and index of agreement between the calculated CWSI and measured CWSI were 0.81, 0.08, and 0.90, respectively. This study could provide a reference method for efficient and accurate monitoring of forest ecosystem water status.


Subject(s)
Quercus , Temperature , Water , Quercus/growth & development , Water/analysis , China , Neural Networks, Computer , Ecosystem , Models, Theoretical , Stress, Physiological , Forests
3.
World J Gastroenterol ; 30(26): 3261-3263, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39086637

ABSTRACT

This letter to the editor relates to the study entitled "Tenofovir amibufenamide vs tenofovir alafenamide for treating chronic hepatitis B: A real-world study", which was recently published by Peng et al. Hepatitis B virus infection represents a significant health burden worldwide and can lead to cirrhosis and even liver cancer. The antiviral drugs currently used to treat patients with chronic hepatitis B infection still have many side effects, so it is crucial to identify safe and effective drugs to inhibit viral replication.


Subject(s)
Antiviral Agents , Hepatitis B virus , Hepatitis B, Chronic , Tenofovir , Humans , Antiviral Agents/therapeutic use , Antiviral Agents/adverse effects , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Tenofovir/therapeutic use , Tenofovir/analogs & derivatives , Tenofovir/adverse effects , Hepatitis B virus/drug effects , Treatment Outcome , Virus Replication/drug effects , Adenine/analogs & derivatives , Adenine/therapeutic use , Adenine/adverse effects , Alanine/analogs & derivatives , Alanine/therapeutic use , Alanine/adverse effects
4.
Int J Ophthalmol ; 17(8): 1545-1556, 2024.
Article in English | MEDLINE | ID: mdl-39156782

ABSTRACT

AIM: To review and summarize the mechanism hypothesis, influencing factors and possible consequences of macular retinal displacement after idiopathic macular hole (IMH) surgery. METHODS: PubMed and Web of Science database was searched for studies published before April 2023 on "Retinal displacement", "Idiopathic macular holes", and "Macular displacement". RESULTS: Recently, more academics have begun to focus on retinal displacement following idiopathic macular holes. They found that internal limiting membrane (ILM) peeling was the main cause of inducing postoperative position shift in the macular region. Moreover, several studies have revealed that the macular hole itself, as well as ILM peeling method, will have an impact on the result. In addition, this phenomenon is related to postoperative changes in macular retinal thickness, cone outer segment tips line recovery, the occurrence of dissociated optic nerve fiber layer (DONFL) and the degree of metamorphopsia. CONCLUSION: As a subclinical phenomenon, the clinical significance of postoperative macular displacement cannot be underestimated as it may affect the recovery of anatomy and function.

5.
Signal Transduct Target Ther ; 9(1): 225, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198425

ABSTRACT

Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.


Subject(s)
Autoimmune Diseases , Tertiary Lymphoid Structures , Humans , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/pathology , Tertiary Lymphoid Structures/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/genetics , Autoimmune Diseases/therapy , Autoimmune Diseases/pathology , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/genetics , Neoplasms/pathology , Inflammation/immunology , Inflammation/genetics , Inflammation/pathology , Lymphoid Tissue/immunology , Lymphoid Tissue/pathology , Animals , Cytokines/immunology , Cytokines/genetics
6.
J Vasc Access ; : 11297298241254635, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39113549

ABSTRACT

PURPOSE: Totally implanted venous access device are widely used for long-term chemotherapy in cancer patients. Previous studies have only focused on the analysis of complications associated with infusion port implantation, ignoring the causes of unsuccessful infusion port implantation. The purpose of this study was to investigate the association between body mass index (BMI) and the success rate of transaxillary intravenous port implantation in breast cancer patients. MATERIALS AND METHODS: To review 361 breast cancer patients who underwent intravenous port implantation from January 2021 to September 2021. Baseline data, and surgical data were collected from the patients, and the success rate of puncture of the axillary vein was recorded. The logistic regression analysis and smoothed curve fitting were used to assess the relationship between BMI and the success rate of axillary venipuncture. In addition, subgroup analyses were performed to explore potential interactions. RESULTS: Under ultrasound guidance, 67.3% of patients (243/361) had an infusion port implanted by axillary vein puncture. There was a roughly linear relationship between BMI and the success rate of axillary venipuncture. In the multiple regression equation, BMI was significantly and negatively associated with the success rate of axillary venipuncture (OR = 0.83; 95% CI = 0.77-0.89; p < 0.001). Stratified analysis showed that the relationship between BMI and the success rate of axillary venipuncture was stable and unaffected by other variables. CONCLUSIONS: The higher the patient's BMI, the higher the chance of difficult axillary venipuncture or failed cannulation.

7.
J Am Chem Soc ; 146(33): 23625-23632, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39120638

ABSTRACT

The interfacial species-built local environments on Cu surfaces impact the CO2 electroreduction process significantly in producing value-added multicarbon (C2+) products. However, intricate interfacial dynamics leads to a challenge in understanding how these species affect the process. Herein, with ab initio molecular dynamics (AIMD) and finite element method (FEM) simulations, we reveal that the highly concentrated interfacial species, including the *CO, hydroxide, and K+, could synergistically promote the C-C coupling on the one-dimensional (1D) porous hollow structure regulated interfacial environment. The Cu-Ag tandem catalyst was then synthesized with the as-designed structure, exhibiting a high C2+ Faradaic efficiency of 76.0% with a partial current density of 380.0 mA cm-2 in near-neutral electrolytes. Furthermore, in situ Raman spectra validate that the 1D porous structure regulates the concentration of interfacial CO intermediates and ions to increase *CO coverage, local pH value, and ionic field, promoting the CO2-to-C2+ activity. These results provide insights into the design of practical ECR electrocatalysts by regulating interfacial species-induced local environments.

8.
Open Med (Wars) ; 19(1): 20240996, 2024.
Article in English | MEDLINE | ID: mdl-39006953

ABSTRACT

Objective: The aim of this study was to investigate the role of the Hounsfield unit value of chest CT non-contrast enhanced scan in evaluating the severity of anemia in HIV-infected patients. Methods: Patients with HIV infection combined with anemia admitted to the Kunming Third People's Hospital were retrospectively collected and divided into mild anemia, moderate anemia, and severe anemia groups by peripheral hemoglobin (HB) content and calculated the ratio of ventricular septum density (VSD) to left ventricular density (LVD) and VSD to right ventricular density (RVD); then, the above patients were divided into the critical value group and the non-critical value group according to HB and compared the differences of LVD, RVD, VSD/LVD, and VSD/RVD in the two groups of patients. Results: A total of 126 patients were included, with a mean age of 47.9 ± 11.1 years; 43 cases were in the mild anemia group, 59 cases were in the moderate anemia group, and 24 cases were in the severe anemia group; the differences in LVD, RVD, VSD/LVD, and VSD/RVD were significant in the three groups; VSD/LVD was an independent predictor for the diagnosis of anemia critical value in the non-critical value group vs critical value group by multifactorial binary logistic regression analysis, and the ROC was plotted using VSD/LVD with an area under the curve of 0.731. Conclusions: The measurement of cardiac cavity density and ventricular septal density under CT plain film scan has a high accuracy in evaluating the severity of anemia in patients with HIV infection and can quickly determine the severity of HIV infection in the early stage and treat it as soon as possible.

9.
Nat Commun ; 15(1): 5987, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013913

ABSTRACT

Ethylene regulates plant growth, development, and stress adaptation. However, the early signaling events following ethylene perception, particularly in the regulation of ethylene receptor/CTRs (CONSTITUTIVE TRIPLE RESPONSE) complex, remains less understood. Here, utilizing the rapid phospho-shift of rice OsCTR2 in response to ethylene as a sensitive readout for signal activation, we revealed that MHZ3, previously identified as a stabilizer of ETHYLENE INSENSITIVE 2 (OsEIN2), is crucial for maintaining OsCTR2 phosphorylation. Genetically, both functional MHZ3 and ethylene receptors prove essential for OsCTR2 phosphorylation. MHZ3 physically interacts with both subfamily I and II ethylene receptors, e.g., OsERS2 and OsETR2 respectively, stabilizing their association with OsCTR2 and thereby maintaining OsCTR2 activity. Ethylene treatment disrupts the interactions within the protein complex MHZ3/receptors/OsCTR2, reducing OsCTR2 phosphorylation and initiating downstream signaling. Our study unveils the dual role of MHZ3 in fine-tuning ethylene signaling activation, providing insights into the initial stages of the ethylene signaling cascade.


Subject(s)
Ethylenes , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Receptors, Cell Surface , Signal Transduction , Oryza/metabolism , Oryza/genetics , Ethylenes/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Phosphorylation , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Plants, Genetically Modified , Membrane Proteins/metabolism , Membrane Proteins/genetics
10.
Small ; : e2402616, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39031846

ABSTRACT

Hard carbon materials have shown promising potential for sodium-ion storage due to accommodating larger sodium ions. However, as for lithium-ion storage, the challenge lies in tuning the high lithiation plateau capacities, which impacts the overall energy density. Here, hard carbon microspheres (HCM) are prepared by tailoring the cross-linked polysaccharide, establishing a comprehensive methodology to obtain high-performance lithium-ion batteries (LIBs) with long plateau capacities. The "adsorption-intercalation mechanism" for lithium storage is revealed combining in situ Raman characterization and ex situ nuclear magnetic resonance spectroscopy. The optimized HCM possesses reduced defect content, enriched graphitic microcrystalline, and low specific surface area, which is beneficial for fast lithium storage. Therefore, HCM demonstrates a high reversible capacity of 537 mAh g-1 with a significant low-voltage plateau capacity ratio of 55%, high initial Coulombic efficiency, and outstanding rate performance (152 mAh g-1 at 10 A g-1). Moreover, the full cell (HCM||LiCoO2) delivers outstanding fast-charging capability (4 min charge to 80% at 10 C) and impressive energy density of 393 Wh kg-1. Additionally, 80% reversible capacity can be delivered under -40 °C with competitive cycling stability. This work provides in-depth insights into the rational design of hard carbon structures with extended low-voltage plateau capacity for high energy LIBs.

11.
Medicine (Baltimore) ; 103(27): e38812, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968470

ABSTRACT

Acquired undescended testes were once considered a sporadic disease. In recent years, reports suggest that they are not uncommon, with an incidence rate about 3 times that of congenital undescended testes. The etiology of acquired undescended testes remains inconclusive, clinical diagnostic standards are unclear, and treatment approaches are still controversial. There is ongoing debate about the mechanism of testicular ascent. The prevailing view is that acquired undescended testes occur due to the partial absorption of the gubernaculum, which forms part of the parietal peritoneum. The residual gubernacular fibers continuously pull on the spermatic cord, preventing the spermatic cord from elongating proportionately to somatic growth, leading to a re-ascent of the testis. Acquired undescended testes may increase the risk of testicular cancer, but this is still debated. The preferred treatment method is also controversial. However, surgical fixation has an immediate effect; no studies have proven that early surgery improves fertility in patients. The etiology of acquired undescended testes is closely related to the continuous pull of the residual gubernacular fibers on the spermatic cord, which prevents the cord from extending proportionately to body growth. There are no clear diagnostic standards for acquired undescended testes yet, and spontaneous descent is possible, so testicular fixation surgery may not be the preferred treatment method.


Subject(s)
Cryptorchidism , Humans , Male , Cryptorchidism/therapy , Cryptorchidism/diagnosis , Cryptorchidism/etiology , Testis , Orchiopexy
12.
ACS Omega ; 9(26): 28666-28675, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38973902

ABSTRACT

Skeletal muscle ischemia-reperfusion (IR) injury is a prevalent type of muscle injury caused by events, such as trauma, arterial embolism, and primary thrombosis. The development of an IR injury is associated with oxidative stress and an excessive inflammatory response. Nanozymes, which have exceptional free radical scavenging activities, have gained significant attention for treating oxidative stress. This study demonstrates that carbon dot (C-dot) nanozymes possess superoxide dismutase (SOD)-like activity and can act as free radical scavengers. The carbon dot nanozymes are presented to mitigate inflammation by downregulating the iNOS/COX-2 pathway and scavenging reactive oxygen-nitrogen species to reduce oxidative stress, thereby suppressing inflammation. In the IR injury of skeletal muscle mice, we demonstrate that C-dots can effectively reduce inflammatory cytokines and tissue edema in skeletal muscle following IR injury in the limb. These findings suggest that C-dots have potential as a therapeutic approach for IR injury of skeletal muscle with negligible systemic toxicity. This offers a promising strategy for clinical intervention.

13.
Phys Chem Chem Phys ; 26(30): 20684-20689, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39041218

ABSTRACT

The highly localized Fe d orbital in ion phthalocyanine (FePc)-based molecular catalysts significantly hinders their electrocatalytic nitrogen reduction reaction (eNRR) performance. Herein, we theoretically designed a series of FePc-based molecules with adjacent metal phthalocyanine sites to form an asymmetric delocalized electronic structure on Fe centers, promoting the catalytic activity and lowering the overpotential of the eNRR, as well as suppressing the hydrogen evolution reaction (HER) side reaction.

14.
Eur J Pharmacol ; 979: 176832, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39038639

ABSTRACT

The contractile function of vascular smooth muscle cells (VSMCs) typically undergoes significant changes with advancing age, leading to severe vascular aging-related diseases. The precise role and mechanism of stromal interaction molecule-1 (STIM1) in age-mediated Ca2+ signaling and vasocontraction remain unclear. The connection between STIM1 and age-related vascular dysfunction was investigated using a multi-myograph system, immunohistochemical analysis, protein blotting, and SA-ß-gal staining. Results showed that vasoconstrictor responses in the thoracic aorta, intrarenal artery, and coronary artery decreased with age. STIM1 knockdown in the intrarenal and coronary arteries reduced vascular tone in young mice, while no change was observed in the thoracic aorta. A significant reduction in vascular tone occurred in the STIM1 knockout group with nifedipine. In the thoracic aorta, vasoconstriction significantly decreased with age following the use of nifedipine and thapsigargin and almost disappeared after STIM1 knockdown. The proportion of senescent VSMCs increased significantly in aged mice and further increased in sm-STIM1 KO aged mice. Moreover, the expression of senescence markers p21, p16, and IL-6 significantly increased with age, with p21 expression further increased in the STIM1 knockdown aged group, but not p16 or IL-6. These findings indicate that different arteries exhibit distinct organ-specific features and that STIM1 downregulation may contribute to age-related vasoconstrictive dysfunction through activation of the p21 pathway.


Subject(s)
Aging , Coronary Vessels , Down-Regulation , Stromal Interaction Molecule 1 , Vasoconstriction , Animals , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 1/genetics , Vasoconstriction/drug effects , Mice , Coronary Vessels/metabolism , Coronary Vessels/physiopathology , Aging/metabolism , Male , Mice, Knockout , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Renal Artery/metabolism , Cellular Senescence/drug effects , Interleukin-6/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Aorta/metabolism , Aorta/drug effects
15.
Angew Chem Int Ed Engl ; : e202409763, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954763

ABSTRACT

Developing non-platinum group metal catalysts for the sluggish hydrogen oxidation reaction (HOR) is critical for alkaline fuel cells. To date, Ni-based materials are the most promising candidates but still suffer from insufficient performance. Herein, we report an unconventional hcp/fcc Ni (u-hcp/fcc Ni) heteronanocrystal with multiple epitaxial hcp/fcc heterointerfaces and coherent twin boundaries, generating rugged surfaces with plenty of asymmetric convex sites. Systematic analyses discover that such convex sites enable the adsorption of *H in unusual bridge positions with weakened binding energy, circumventing the over-strong *H adsorption on traditional hollow positions, and simultaneously stabilizing interfacial *H2O. It thus synergistically optimizes the HOR thermodynamic process as well as reduces the kinetic barrier of the rate-determining Volmer step. Consequently, the developed u-hcp/fcc Ni exhibits the top-rank alkaline HOR activity with a mass activity of 40.6 mA mgNi -1 (6.3 times higher than fcc Ni control) together with superior stability and high CO-tolerance. These results provide a paradigm for designing high-performance catalysts by shifting the adsorption state of intermediates through configuring surface sites.

16.
Nat Commun ; 15(1): 6102, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030211

ABSTRACT

Visible-light photocatalysis has evolved as a powerful technique to enable controllable radical reactions. Exploring unique photocatalytic mode for obtaining new chemoselectivity and product diversity is of great significance. Herein, we present a photo-induced chemoselective 1,2-diheteroarylation of unactivated alkenes utilizing halopyridines and quinolines. The ring-fused azaarenes serve as not only substrate, but also potential precursors for halogen-atom abstraction for pyridyl radical generation in this photocatalysis. As a complement to metal catalysis, this photo-induced radical process with mild and redox neutral conditions assembles two different heteroaryl groups into alkenes regioselectively and contribute to broad substrates scope. The obtained products containing aza-arene units permit various further diversifications, demonstrating the synthetic utility of this protocol. We anticipate that this protocol will trigger the further advancement of photo-induced alkyl/aryl halides activation.

17.
Int J Mol Sci ; 25(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39062864

ABSTRACT

The dimensions of organs such as flowers, leaves, and seeds are governed by processes of cellular proliferation and expansion. In soybeans, the dimensions of these organs exhibit a strong correlation with crop yield, quality, and other phenotypic traits. Nevertheless, there exists a scarcity of research concerning the regulatory genes influencing flower size, particularly within the soybean species. In this study, 309 samples of 3 soybean types (123 cultivar, 90 landrace, and 96 wild) were re-sequenced. The microscopic phenotype of soybean flower organs was photographed using a three-eye microscope, and the phenotypic data were extracted by means of computer vision. Pearson correlation analysis was employed to assess the relationship between petal and seed phenotypes, revealing a strong correlation between the sizes of these two organs. Through GWASs, SNP loci significantly associated with flower organ size were identified. Subsequently, haplotype analysis was conducted to screen for upstream and downstream genes of these loci, thereby identifying potential candidate genes. In total, 77 significant SNPs associated with vexil petals, 562 significant SNPs associated with wing petals, and 34 significant SNPs associated with keel petals were found. Candidate genes were screened by candidate sites, and haplotype analysis was performed on the candidate genes. Finally, the present investigation yielded 25 and 10 genes of notable significance through haplotype analysis in the vexil and wing regions, respectively. Notably, Glyma.07G234200, previously documented for its high expression across various plant organs, including flowers, pods, leaves, roots, and seeds, was among these identified genes. The research contributes novel insights to soybean breeding endeavors, particularly in the exploration of genes governing organ development, the selection of field materials, and the enhancement of crop yield. It played a role in the process of material selection during the growth period and further accelerated the process of soybean breeding material selection.


Subject(s)
Flowers , Genome-Wide Association Study , Glycine max , Phenotype , Polymorphism, Single Nucleotide , Glycine max/genetics , Glycine max/anatomy & histology , Glycine max/growth & development , Flowers/genetics , Flowers/anatomy & histology , Flowers/growth & development , Haplotypes , Quantitative Trait Loci , Seeds/genetics , Seeds/growth & development , Seeds/anatomy & histology
18.
Food Funct ; 15(15): 8053-8069, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38989659

ABSTRACT

Methionine is an important sulfur-containing amino acid. Health effects of both methionine restriction (MR) and methionine supplementation (MS) have been studied. This study aimed to investigate the impact of a high-methionine diet (HMD) (1.64% methionine) on both the gut and liver functions in mice through multi-omic analyses. Hepatic steatosis and compromised gut barrier function were observed in mice fed the HMD. RNA-sequencing (RNA-seq) analysis of liver gene expression patterns revealed the upregulation of lipid synthesis and degradation pathways, cholesterol metabolism and inflammation-related nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway. Metagenomic sequencing of cecal content demonstrated a shift in gut microbial composition with an increased abundance of opportunistic pathogens and gut microbial functions with up-regulated lipopolysaccharide (LPS) biosynthesis in mice fed HMD. Metabolomic study of cecal content showed an altered gut lipid profile and the level of bioactive lipids, including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), palmitoylethanolamide (PEA), linoleoyl ethanolamide (LEA) and arachidonoyl ethanolamide (AEA), that carry anti-inflammatory effects significantly reduced in the gut of mice fed the HMD. Correlation analysis demonstrated that gut microbiota was highly associated with liver and gut functions and gut bioactive lipid content. In conclusion, this study suggested that the HMD exerted negative impacts on both the gut and liver, and an adequate amount of methionine intake should be carefully determined to ensure normal physiological function without causing adverse effects.


Subject(s)
Gastrointestinal Microbiome , Liver , Methionine , Mice, Inbred C57BL , Animals , Methionine/metabolism , Methionine/pharmacology , Gastrointestinal Microbiome/drug effects , Mice , Male , Liver/metabolism , Fatty Liver/metabolism , Lipid Metabolism/drug effects , Lipids
19.
Biotechnol Adv ; 75: 108416, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39033835

ABSTRACT

Glycosaminoglycans (GAGs) are extensively utilized in clinical, cosmetic, and healthcare field, as well as in the treatment of thrombosis, osteoarthritis, rheumatism, and cancer. The biological production of GAGs is a strategy that has garnered significant attention due to its numerous advantages over traditional preparation methods. In this review, we embark on a journey to decode the intricate molecular symphony that orchestrates the biosynthesis of glycosaminoglycans. By unraveling the complex interplay of related enzymes and thorough excavation of the intricate metabolic cascades involved, GAGs chain aggregation and transportation, which efficiently and controllably modulate GAGs sulfation patterns involved in biosynthetic pathway, we endeavor to offer a thorough comprehension of how these remarkable GAGs are intricately assembled and pushes the boundaries of our understanding in GAGs biosynthesis.


Subject(s)
Glycosaminoglycans , Glycosaminoglycans/biosynthesis , Glycosaminoglycans/metabolism , Humans , Biosynthetic Pathways , Animals , Polysaccharides/biosynthesis , Polysaccharides/metabolism
20.
Public Health Nurs ; 41(5): 943-950, 2024.
Article in English | MEDLINE | ID: mdl-38946470

ABSTRACT

OBJECTIVE: Social residents become increasingly concerned about Alzheimer's dementia (AD) as a global public health crisis. China's AD population is the largest and growing fastest. However, no study has examined Chinese social residents' knowledge and attitudes concerning Alzheimer's illness. This study examined Chinese social residents' AD knowledge and attitudes using the Alzheimer's Disease Knowledge Scale (ADKS) and dementia attitudes scale (DAS). DESIGN: Cross-sectional survey. SAMPLE: 338 social residents over 18 years old from various Chinese regions were recruited using convenient sampling. MEASUREMENTS: The ADKS (Chinese) and the Dementia Attitude Scale (Chinese) were used to assess their knowledge and attitude regarding AD. RESULTS: A total of 328 respondents (97.04%) completed the survey. ADKS = 19.44 ± 3.33; DAS = 86.98 ± 12.7. Age and education levels can have a substantial impact on ADKS scores, and education levels can have a substantial impact on DAS scores. CONCLUSIONS: Low levels of awareness and acceptance of AD exist among Chinese residents. The results indicate that China must immediately implement comprehensive AD education for its social residents.


Subject(s)
Alzheimer Disease , Health Knowledge, Attitudes, Practice , Humans , Cross-Sectional Studies , China , Male , Female , Middle Aged , Adult , Aged , Surveys and Questionnaires , Young Adult , Aged, 80 and over , East Asian People
SELECTION OF CITATIONS
SEARCH DETAIL