Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.688
Filter
1.
J Ethnopharmacol ; 336: 118760, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39216772

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Huanglian Jiedu Decoction (HLJDD) is an ancient formula of traditional Chinese medicine that is commonly utilized in a range of disorders, and it has been shown to have pharmacological effects on glucose and lipid metabolism. However, the specific mechanism of HLJDD for the treatment of obesity and related metabolic disorders remains to be further investigated. AIM OF THE STUDY: It has been thought that encouraging adipose thermogenesis to raise the body's energy expenditure is a useful tactic for improving metabolic abnormalities and losing weight. In this study, we investigated the ability and underlying mechanisms of HLJDD to regulate fat cell thermogenesis to improve energy expenditure in obesity. METHODS: The obese mouse model was established on a high-fat diet for 12 weeks. All mice were divided into NC, HFD, HFD with HLJDD of a low dose (2.25 g/kg/d), and HFD with HLJDD of a high dose (4.5 g/kg/d) groups and kept for 4 weeks. In vitro experiments were conducted to evaluate the effects of 5% and 10% HLJDD-containing serum on differentiated 3T3-L1 cells and HDAC3-knocking-down 3T3-L1 cells. RESULTS: The results showed that HLJDD treatment significantly improved glucose and insulin tolerance and decreased the adipocyte radius of WATs, as well as increased energy consumption in obese mice. Besides, HLJDD treatment dramatically increased the levels of thermogenic genes UCP-1 and PGC-1α while suppressing HDAC3 levels in WATs and 3T3-L1 adipocytes. Importantly, the effects of HLJDD on PGC-1α and UCP-1 were blocked in HDAC3 knockdown adipocytes. CONCLUSIONS: Therefore, these results suggest that HLJDD enhanced adipose thermogenesis and improved energy expenditure by inhibiting HDAC3, thereby increasing UCP-1 and PGC-1α expression. These findings amplified the mechanisms of HLJDD and its potential to treat obesity and related metabolic disorders.


Subject(s)
3T3-L1 Cells , Diet, High-Fat , Drugs, Chinese Herbal , Histone Deacetylases , Obesity , Thermogenesis , Animals , Male , Mice , Drugs, Chinese Herbal/pharmacology , Energy Metabolism/drug effects , Histone Deacetylases/metabolism , Mice, Inbred C57BL , Mice, Obese , Obesity/drug therapy , Thermogenesis/drug effects , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics
2.
Gynecol Endocrinol ; 40(1): 2405098, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39297784

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in premenopausal women, often linked to abdominal obesity, insulin resistance, and metabolic issues. With its heterogeneous nature, PCOS treatment should be tailored to individual symptoms and patient preferences. This study examines collaboration networks among countries, institutions, authors, references, and journals related to PCOS treatment. METHODS: Web of Science data was analyzed using VOSviewer and CiteSpace for bibliometric visualization. Chinese and Western medicine treatments for PCOS were reviewed, emphasizing symptom-targeted solutions. RESULTS: Data from 4682 records authored by 400 individuals from 515 institutes in 62 countries revealed China as the leading contributor. Notable authors include Monash University and Richard S. Legro. Common research themes include adipocytes, inflammation, insulin sensitivity, oxidative stress, and the gut microbiome. Tailoring treatment to individual needs is essential, focusing on hyperandrogenism, ovulation, and insulin resistance, with lifestyle counseling to address obesity. CONCLUSION: This bibliometric analysis provides valuable insights into the research status of PCOS treatment. China has made significant contributions, and complementary and alternative therapies, such as traditional Chinese medicine and acupuncture, have also shown beneficial effects recently. The research on inflammation, oxidative stress, and the gut microbiome may provide new targets and strategies for the treatment of PCOS. The recognition of the metabolic problems in PCOS patients facilitates the formulation of more personalized treatment plans to improve the prognosis of patients.


Subject(s)
Bibliometrics , Polycystic Ovary Syndrome , Polycystic Ovary Syndrome/therapy , Humans , Female , Insulin Resistance
3.
J Hazard Mater ; 480: 135926, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39307018

ABSTRACT

Cadmium (Cd) pollution poses a significant ecological risk to mangrove ecosystems. Trehalose has excellent potential to mitigate the adverse effects of heavy metals. Unfortunately, the mechanisms related to trehalose-mediated heavy metal tolerance in plants remain elusive. In the present study, we firstly found that Cd induced the accumulation of trehalose and the differential expression of trehalose biosynthesis genes in the roots of mangrove plant Avicennia marina. Then, we found that the application of exogenous trehalose could alleviate the negative effects of Cd on A. marina by phenotypic observation. In addition, photosynthetic parameters and cellular ultrastructure analyses demonstrated that exogenous trehalose could improve the photosynthesis and stabilize the chloroplast and nuclear structure of the leaves of A. marina. Besides, exogenous trehalose could inhibit the Cd2+ influx from the root to reduce the Cd2+ content in A. marina. Subsequently, substrate sensitivity assay combined with ion uptake analysis using yeast cells showed that several trehalose biosynthesis genes may have a regulatory function for Cd2+ transport. Finally, we further identified a positive regulatory factor, AmTPS6, which enhances the Cd tolerance in transgenic Arabidopsis thaliana. Taken together, these findings provide new understanding to the mechanism of Cd tolerance in mangrove A. marina at trehalose aspect and a theoretical basis for the conservation of mangroves in coastal wetlands.

4.
Nat Chem ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256544

ABSTRACT

Nitriles (R-C≡N) have been investigated since the late eighteenth century and are ubiquitous encounters in organic and inorganic syntheses. In contrast, heavier nitriles, which contain the heavier analogues of carbon and nitrogen, are sparsely investigated species. Here we report the synthesis and isolation of a phosphino-silylene featuring an N-heterocyclic carbene-phosphinidene and a highly sterically demanding silyl group as substituents. Due to its unique structural motif, it can be regarded as a Lewis base-stabilized heavier nitrile. The Si-P bond displays multiple bond character and a bent R-Si-P geometry, the latter indicating fundamental differences between heavier and classical nitriles. In solution, a quantitative unusual rearrangement to a phosphasilenylidene occurs. This rearrangement is consistent with theoretical predictions of rearrangements from heavier nitriles to heavier isonitriles. Our preliminary reactivity studies revealed that both isomers exhibit highly nucleophilic silicon centres capable of oxidative addition and coordination to iron tetracarbonyl.

5.
Nitric Oxide ; 152: 19-30, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39260562

ABSTRACT

The mutual regulation between hydrogen sulfide (H2S) and microRNA (miRNA) is involved in the development of many diseases, including cancer, cardiovascular disease, inflammatory disease, and high-risk pregnancy. Abnormal expressions of endogenous H2S-producing enzyme and miRNA in tissues and cells often indicate the occurrence of diseases, so the maintenance of their normal levels in the body can mitigate damages caused by various factors. Many studies have found that H2S can promote the migration, invasion, and proliferation of cancer cells by regulating the expression of miRNA, while many H2S donors can inhibit cancer progression by interfering with the proliferation, apoptosis, cell cycle, metastasis, and angiogenesis of cancer cells. Furthermore, the mutual regulation between H2S and miRNA can also prevent cell injury in cardiovascular disease and inflammatory disease through anti-inflammation, anti-oxidation, anti-apoptosis, and pro-autophagy. In addition, H2S can promote angiogenesis and relieve vasoconstriction by regulating the expression of miRNA, thereby improving fetal growth in high-risk pregnancy. In this review, we discuss the mechanism of mutual regulation between H2S and miRNA in various diseases, which may provide reliable therapeutic targets for these diseases.

6.
Exp Neurol ; 382: 114964, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39288830

ABSTRACT

BACKGROUND: Intracerebral hemorrhage (ICH) stands out as the most fatal subtype of stroke, currently devoid of effective therapy. Recent research underscores the significance of Axl and its ligand growth arrest-specific 6 (Gas6) in normal brain function and a spectrum of neurological disorders, including ICH. This study is designed to delve into the role of Gas6/Axl signaling in facilitating hematoma clearance and neuroinflammation resolution following ICH. METHODS: Adult male C57BL/6 mice were randomly assigned to sham and ICH groups. ICH was induced by intrastriatal injection of autologous arterial blood. Recombinant mouse Gas6 (rmGas6) was administered intracerebroventricularly 30 min after ICH. Virus-induced knockdown of Axl or R428 (a selective inhibitor of Axl) treatment was administrated before ICH induction to investigate the protective mechanisms. Molecular changes were assessed using western blot, enzyme-linked immunosorbent assay and immunohistochemistry. Coronal brain slices, brain water content and neurobehavioral tests were employed to evaluate histological and neurofunctional outcomes, respectively. Primary glia cultures and erythrophagocytosis assays were applied for mechanistic studies. RESULTS: The expression of Axl increased at 12 h after ICH, peaking on day 3. Gas6 expression did not remarkably changed until day 3 post-ICH. Early administration of rmGas6 following ICH significantly reduced hematoma volume, mitigated brain edema, and restored neurological function. Both Axl-knockdown and Axl inhibitor treatment abolished the neuroprotection of exogenous Gas6 in ICH. In vitro studies demonstrated that microglia exhibited higher capacity for phagocytosing eryptotic erythrocytes compared to normal erythrocytes, a process reversed by blocking the externalized phosphatidylserine on eryptotic erythrocytes. The erythrophagocytosis by microglia was Axl-mediated and Gas6-dependent. Augmentation of Gas6/Axl signaling attenuated neuroinflammation and drove microglia towards pro-resolving phenotype. CONCLUSIONS: This study demonstrated the beneficial effects of recombinant Gas6 on hematoma resolution, alleviation of neuroinflammation, and neurofunctional recovery in an animal model of ICH. These effects were primarily mediated by the phagocytotic role of Axl expressed on microglia.

7.
Pharmacol Res ; 208: 107399, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39245191

ABSTRACT

One of the main underlying etiologies of type 2 diabetes (T2DM) is insulin resistance, which is most frequently caused by obesity. Notably, the deregulation of adipokine secretion from visceral adiposity has been identified as a crucial characteristic of type 2 diabetes and obesity. Spexin is an adipokine that is released by many different tissues, including white adipocytes and the glandular stomach, and is negatively connected with the state of energy storage. This peptide acts through GALR2/3 receptors to control a wide range of metabolic processes, including inflammation, browning, lipolysis, energy expenditure, and eating behavior. Specifically, spexin can enter the hypothalamus and regulate the hypothalamic melanocortin system, which in turn balances energy expenditure and food intake. This review examines recent advances and the underlying mechanisms of spexin in obesity and T2DM. In particular, we address a range of topics from basic research to clinical findings, such as an analysis of the possible function of spexin in the hypothalamic melanocortin response, which involves reducing energy intake and increasing energy expenditure while also enhancing insulin sensitivity and glucose tolerance. Gaining more insight into the mechanisms that underlie the spexin system's control over energy metabolism and homeostasis may facilitate the development of innovative treatment approaches that focus on combating obesity and diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Energy Metabolism , Hypothalamus , Obesity , Peptide Hormones , Humans , Hypothalamus/metabolism , Animals , Peptide Hormones/metabolism , Diabetes Mellitus, Type 2/metabolism , Obesity/metabolism , Melanocortins/metabolism
8.
Nanotechnology ; 35(49)2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39284323

ABSTRACT

The selective cleavage of lignin C-C bonds is a highly sought-after process with the goal of obtaining low-molecular-weight aromatic chemicals from renewable resources. However, it remains a challenging task to achieve under mild conditions. Photocatalysis is a potentially promising approach to address this issue, but the development of efficient photocatalysts is still in progress. In this study, we introduce the heterostructured TiO2@g-C3N4photocatalyst for the development of a visible light photocatalytic procedure for the selective cleavage of lignin C-C bonds under mild conditions. The photocatalyst displays favourable visible light absorption, efficient charge separation efficiency, and promising reusability. A typicalß-O-4 dimer model, 2-phenoxy-1-phenylethanol, was effectively (96.0% conversion) and selectively (95.0 selectivity) cleaved under visible light at ambient conditions. This photocatalytic procedure was also effective when subjected to solar irradiation or other lignin dimer models withß-O-4 orß-1 linkages. This reaction occurred through a Cß-centred radical intermediate and a six-membered transition state with photogenerated holes as the primary active species. The Cα-OH oxidative dehydrogenation of the substrate could also take place but was a relatively minor route. This study provides a new photocatalytic procedure for visible-light-driven lignin valorisation and sheds light on the design of high-performance nanocomposite photocatalysts for C-C bond cleavage.

9.
Mol Biol Rep ; 51(1): 951, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230614

ABSTRACT

BACKGROUND: Hereditary spastic paraplegia (HSP) represents a group of monogenic neurodegenerative disorders characterized by high clinical and genetic heterogeneity. HSP is characterized by slowly progressing hypertonia of both lower extremities, spastic gait, and myasthenia. The most prevalent autosomal dominant form of HSP, known as spastic paraplegia 4 (SPG4), is attributed to variants in the spastin (SPAST) gene. METHODS AND RESULTS: Here, a Chinese family presenting with spasticity in both legs and a shuffling gait participated in our investigation. Whole exome sequencing of the proband was utilized to identify the genetic lesion in the family. Through data filtering, Sanger sequencing validation, and co-separation analysis, a novel variant (NM_014946.3: c.1669G > C:p.A557P) of SPAST was identified as the genetic lesion of this family. Furthermore, bioinformatic analysis revealed that this variant was deleterious and located in a highly evolutionarily conserved site. CONCLUSION: Our study confirmed the diagnosis of SPG4 in this family, contributing to genetic counseling for families affected by SPG4. Additionally, our study broadened the spectrum of SPAST variants and highlighted the importance of ATPases associated with various cellular activity domains of SPAST.


Subject(s)
Spastic Paraplegia, Hereditary , Spastin , Adult , Female , Humans , Male , Middle Aged , China , East Asian People/genetics , Exome Sequencing/methods , Mutation/genetics , Paraplegia , Pedigree , Spastic Paraplegia, Hereditary/genetics , Spastin/genetics
10.
Expert Rev Med Devices ; : 1-6, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39233346

ABSTRACT

OBJECTIVES: To investigate the diagnostic value of iTrace visual function analyzer, Pentacam 3D anterior segment analysis system and Lens Opacities Classification System III (LOCS III) in assessing lens opacity in patients with age-related cataract (ARC). METHODS: A total of 129 patients with ARC admitted to Anonymized from May 2019 to April 2021 were selected as the research objects. The degree of lens opacity was evaluated by LOCS III classification, iTrace and anterior segment analysis. RESULTS: The Pentacam nucleus staging (PNS) grade was strongly correlated with nuclear color (NC) (r = 0.537, p < 0.05) and moderately correlated with nuclear opalescence (NO) (r = 0.473, p < 0.05). The integrated density (IntDen) in 3-mm nuclear region was strongly correlated with NC (r = 0.548, p < 0.05) and NO (r = 0.539, p < 0.05). The dysfunctional lens index (DLI) in 3-mm area was negatively correlated with NC (r=-0.252, p < 0.05), NO (r=-0.239, p < 0.05) and posterior subcapsular cataract (r=-0.271, p < 0.05). PNS was weakly negatively correlated with the DLI in 3-mm area (r=-0.219, p < 0.05), and IntDen in 3-mm core area was weakly negatively correlated with the DLI in 3-mm area (r=-0.291, p < 0.05). CONCLUSION: A combination of iTrace, anterior segment analysis and LOCS III may be beneficial in objectively assessing the opacity of different regions of the lens.

11.
Phytother Res ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39267167

ABSTRACT

Long-term inflammation can cause chronic pain and trigger patients' anxiety by sensitizing the central nervous system. However, effective drugs with few side effects for treating chronic pain-induced anxiety are still lacking. The anxiolytic and anti-inflammatory effects of ruscogenin (RUS), an important active compound in Ophiopogon japonicus, were evaluated in a mouse model of chronic inflammatory pain and N9 cells. RUS (5, 10, or 20 mg/kg/day, i.g.) was administered once daily for 7 days after CFA injection; pain- and anxiety-like behaviors were assessed in mice. Anti-inflammatory effect of RUS (0.1, 1, 10 µM) on N9 microglia after LPS treatment was evaluated. Inflammatory markers (TNF-α, IL-1ß, IL-6, CD86, IL-4, ARG-1, and CD206) were measured using qPCR. The levels of IBA1, ROS, NF-κB, TLR4, P-IKK, P-IκBα, and P65, MAPKs (ERK, JNK, and P38), NLRP3 (caspase-1, ASC, and NLRP3) were detected by Western blotting or immunofluorescence staining. The potential target of RUS was validated by molecular docking and adeno-associated virus injection. Mice in CFA group exhibited allodynia and anxiety-like behaviors. LPS induced neuroinflammation in N9 cells. Both CFA and LPS increased the levels of IBA1, ROS, and inflammatory markers. RUS (10 mg/kg in vivo and 1 µM in vitro) alleviated these alterations through NF-κB/MAPKs/NLRP3 signaling pathways but had no effect on pain hypersensitivity. TLR4 strongly interacted with RUS, and TLR4 overexpression abolished the effects of RUS on anxiety and neuroinflammation. RUS exerts anti-inflammatory and anxiolytic effects via TLR4-mediated NF-κB/MAPKs/NLRP3 signaling pathways, which provides a basis for the treatment of chronic pain-induced anxiety.

12.
Cancer Lett ; : 217270, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39306227

ABSTRACT

Alternative splicing (AS) plays a crucial role in the hallmarks of cancer and can open new avenues for targeted therapies. However, the aberrant AS events and the metastatic cascade in papillary thyroid carcinoma (PTC) remain largely unclear. Here, we identify the splicing factor, quaking protein (QKI), which was significantly downregulated in PTC and correlated with poor survival outcomes in patients with PTC. Functional studies indicated that low expression of QKI promoted the PTC cell growth and metastasis in vitro and in vivo. Mechanistically, low QKI induced exon 14 retention of extended synaptotagmin 2 (E-Syt2) and produced a long isoform transcript (termed E-Syt2L) that acted as an important oncogenic factor of PTC metastasis. Notably, overexpression of long non-coding RNA eosinophil granule ontogeny transcript (EGOT) physically binds to QKI and suppressed its activity by inhibiting ubiquitin specific peptidase 25 (USP25) mediated deubiquitination and subsequent degradation of QKI. Collectively, these data demonstrate the novel mechanistic links between the splicing factor QKI and splicing event in PTC metastasis and support the potential utility of targeting splicing events as a therapeutic strategy for PTC.

13.
Lab Invest ; : 102134, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39307311

ABSTRACT

Alcoholic liver disease (ALD) caused by chronic alcohol abuse involves complex processes from steatosis to fibrosis, cirrhosis, and hepatocellular carcinoma, posing a global health issue. Bromodomain protein 4 (BRD4) typically serves as a "reader" modulating the functions of transcription factors involved in various biological processes and disease progression. However, the specific mechanisms underlying alcoholic liver injury remain unclear. Here, we detected aberrant BRD4 expression in the alcohol-induced ALD mouse model of chronic and binge ethanol feeding developed by the National Institute on Alcohol Abuse and Alcoholism (NIAAA model), consistent with the in vitro results in Aml-12 mouse hepatocytes. Blocking and inhibiting BRD4 restored the impaired autophagic flux and lysosomal functions in alcohol-treated Aml-12 cells, whereas BRD4 overexpression reduced the expression levels of autophagy marker and lysosomal genes. Furthermore, mouse BRD4 knockdown, mediated by a short hairpin RNA carried by the adeno-associated virus serotype 8, significantly attenuated the alcohol-induced hepatocyte damage, including lipid deposition and inflammatory cell infiltration. Mechanistically, BRD4 overexpression in alcoholic liver injury inhibited the expression of sirtuin (SIRT)-1 in Aml-12 cells. Chromatin immunoprecipitation and dual-luciferase reporter assays revealed that BRD4 functions as a transcription factor and suppressor, actively binding to the SIRT1 promoter region and inhibiting its transcription. SIRT1 activated autophagy, which was suppressed in alcoholic liver injury via Beclin1 deacetylation. In conclusion, our study revealed that BRD4 negatively regulated the SIRT1/Beclin1 axis and that its deficiency alleviated alcohol-induced liver injury in mice, thus providing a new strategy for ALD treatment.

14.
Huan Jing Ke Xue ; 45(9): 5060-5068, 2024 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-39323125

ABSTRACT

Land use changes are always patchy and widespread within a region, making it a challenge to identify the point-scale pressure of reducing carbon emissions from land use/cover change (LUCC). The carbon emission observation index (CEOI) was thus proposed to conduct the point-scale comparability analysis, which was based on the unique net C flux effects of conversions between two different land use types. Then, the spatial-temporal characteristics of land use changes and the resulting pressure of reducing carbon emissions were studied in the Weihe River Basin of China, which adopted the LUCC data from 2000 to 2020 and models of the Markov transition matrix (MTM), compound carbon emission coefficients (CEC) of various types of land use changes, and the CEOI-based classification method on point-scale pressure of reducing carbon emissions. The results showed that: ① The net C flux was from 3.551 Tg C (2000-2010) to 7.031 Tg C (2010-2020), and the pressure of reducing carbon emissions from LUCC had been continuously increasing, which was mainly driven by the significant increase in change-spots with the super-strong ability to reduce carbon emissions. ② Due to contributions from change spots with carbon uptake ability, the amount of carbon released to the atmosphere was eliminated by approximately 19.21% over the period 2000-2020 and approximately 37.4% during 2000-2010. ③ Change spots on various pressure levels for reducing carbon emissions were distributed unevenly in the basin, with their gravity points in the previous 10 years (2010-2020) far away from those during 2000-2010. Additionally, the gravity points of change-spots with a strong ability to reduce carbon emissions from conversions of grassland into forestland moved northeastward from Tianshui City to Pingliang City, whereas the gravity points of other change-spots with different abilities to reduce carbon emissions were mostly northwestward to the north-central region with higher elevations from the Middle and Lower Reaches of the Weihe River Basin with low elevations.

15.
J Food Sci ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39323251

ABSTRACT

This study evaluated the structural changes in hemicellulose and cellulose from sunflower seeds before and after roasting at 160°C, 190°C, and 220°C. Sugar composition, molecular weight, Fourier transform infrared spectrometry, thermogravimetric, and NMR analyses were utilized to determine the structural properties of these polysaccharides and detect the volatile compounds. The results showed that roasting destroyed the microstructure of these hemicelluloses and cellulose. Glucose and arabinose of hemicellulose were more easily degraded than other sugars during roasting. The galacturonic acid content increased from 7.8% to 46.66% after roasting. The hemicellulose obtained at 220°C had a backbone of D-xylose residues with a ß-(1→4)-linkage. The molecular weight of cellulosic polysaccharides decreased with the increase of roasting temperature. The crystallinity increased from 28.92% to 31.86% revealing that mainly the amorphous regions of cellulosic polysaccharides were destroyed by roasting. After roasting, the volatile compounds of these polysaccharides were rich in furfural, which was produced by caramelization and the Maillard reaction, contributing to the characteristic aroma of roasted sunflower seeds. This study provides some information on the relationship between structural changes of polysaccharides and the formation of flavor during roasting sunflower seeds.

16.
Int J Ophthalmol ; 17(9): 1665-1674, 2024.
Article in English | MEDLINE | ID: mdl-39296557

ABSTRACT

AIM: To study functional brain abnormalities in patients with hypertensive retinopathy (HR) and to discuss the pathophysiological mechanisms of HR by fractional amplitude of low-frequency fluctuations (fALFFs) method. METHODS: Twenty HR patients and 20 healthy controls (HCs) were respectively recruited. The age, gender, and educational background characteristics of the two groups were similar. After functional magnetic resonance imaging (fMRI) scanning, the subjects' spontaneous brain activity was evaluated with the fALFF method. Receiver operating characteristic (ROC) curve analysis was used to classify the data. Further, we used Pearson's correlation analysis to explore the relationship between fALFF values in specific brain regions and clinical behaviors in patients with HR. RESULTS: The brain areas of the HR group with lower fALFF values than HCs were the right orbital part of the middle frontal gyrus (RO-MFG) and right lingual gyrus. In contrast, the values of fALFFs in the left middle temporal gyrus (MTG), left superior temporal pole (STP), left middle frontal gyrus (MFG), left superior marginal gyrus (SMG), left superior parietal lobule (SPL), and right supplementary motor area (SMA) were higher in the HR group. The results of a t-test showed that the average values of fALFFs were statistically significantly different in the HR group and HC group (P<0.001). The fALFF values of the left middle frontal gyrus in HR patients were positively correlated with anxiety scores (r=0.9232; P<0.0001) and depression scores (r=0.9682; P<0.0001). CONCLUSION: fALFF values in multiple brain regions of HR patients are abnormal, suggesting that these brain regions in HR patients may be dysfunctional, which may help to reveal the pathophysiological mechanisms of HR.

17.
Vox Sang ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222925

ABSTRACT

BACKGROUND AND OBJECTIVES: Neonatal cardiac surgery requires careful consideration of cardiopulmonary bypass (CPB) priming fluid composition due to small blood volume and immature physiology. This study investigated the impact of allogeneic stored red blood cells (RBCs) processed using an autotransfusion system in CPB priming fluid for neonates. MATERIALS AND METHODS: We compared perioperative parameters, inflammatory mediators, coagulation indicators, vasoactive-inotropic score (VIS) and clinical outcomes between neonates receiving unwashed (n = 56) and washed (n = 45) RBCs in CPB priming fluid. Regression models were used to assess the independent association between RBC washing and patient outcomes. RESULTS: The autotransfusion system improved stored RBC quality. The washed group showed higher peak haematocrit (p < 0.01) and haemoglobin levels (p = 0.04) during CPB, an increased oxygen delivery index during rewarming (p < 0.05) and lower postoperative lactate levels and VIS (p < 0.05). Inflammatory (IL-6, IL-8 and IL-10) and coagulation parameters (D-dimer, fibrinogen and fibrin degradation product) fluctuated compared with baseline but did not significantly differ between groups. The washed group had a lower incidence of hyperlactacidaemia and delayed sternal closure at CPB weaning. CONCLUSIONS: Adding washed allogeneic stored RBCs to neonatal CPB priming fluid reduced postoperative lactate elevation and VIS without early improvement in the inflammatory and coagulation systems.

18.
Int J Biol Macromol ; 279(Pt 2): 135237, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39218190

ABSTRACT

Kuey teow is one of the delicacies of Guangdong, China and is a gluten-free noodle dish made from rice. It has a short storage period and extending the shelf life by quick freezing induces quality deterioration due to temperature fluctuations. To improve its freeze-thaw frozen storage quality, this paper examined the effects of hydroxypropyl corn starch (HCS), guar gum (GG), and compound phosphates (CP) on the quality of quick-frozen kuey teow during freeze-thaw cycles. The mechanism was investigated by identifying changes in the moisture status, aging degree of the starch, and textural and cooking characteristics. The results showed that all three additions improved the toughness, chewiness and steaming characteristics of the kuey teow, with CP significantly enhancing chewiness. XRD and FTIR results revealed that GG more significantly inhibited the decrease of starch crystallinity, while HCS inhibited starch aging. GG, HCS and CP all improved the hydration characteristics and water holding capacity of rice starch. GG enhances the ability of starch to bind more tightly with water, resulting in a more uniform water distribution and a more continuous and tight structure of the kuey teow. This study will provide a theoretical basis for compounding and optimizing the quick-freezing of kuey teow.

19.
World J Gastroenterol ; 30(32): 3766-3782, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39221071

ABSTRACT

BACKGROUND: The efficacy of mesenchymal stem cells (MSCs) in treating liver fibrosis has been demonstrated in several clinical studies. However, their low survival and liver implantation rates remain problematic. In recent years, a large number of studies in animal models of liver fibrosis have shown that MSCs combined with drugs can improve the efficacy of MSCs in the treatment of liver fibrosis alone and inhibit its progression to end-stage liver disease. This has inspired new ways of thinking about treating liver fibrosis. AIM: To investigate the effectiveness and mechanisms of MSCs combined with drugs in treating liver fibrosis. METHODS: Data sources included four electronic databases and were constructed until January 2024. The subjects, interventions, comparators, outcomes, and study design principle were used to screen the literature, and the quality of the literature was evaluated to assess the risk of bias. Relevant randomised controlled trials were selected, and the final 13 studies were included in the final study. RESULTS: A total of 13 studies were included after screening. Pooled analysis showed that MSCs combined with drug therapy significantly improved liver function, promoted the repair of damaged liver tissues, reduced the level of liver fibrosis-related indexes, and effectively ameliorated hepatic fibrosis by modulating the hepatic inflammatory microenvironment, promoting the homing of MSCs, and regulating the relevant signaling pathways, and the treatment efficacy was superior to MSCs alone. However, the combined treatment statistics showed no ame-lioration in serum albumin levels (standardized mean difference = 0.77, 95% confidence interval: -0.13 to 1.68, P = 0.09). CONCLUSION: In conclusion, MSCs combined with drugs for treating liver fibrosis effectively make up for the shortcomings of MSCs in their therapeutic effects. However, due to the different drugs, the treatment mechanism and effect also differ. Therefore, more randomized controlled trials are needed to compare the therapeutic efficacy of different drugs in combination with MSCs, aiming to select the "best companion" of MSCs in treating hepatic fibrosis.


Subject(s)
Liver Cirrhosis , Mesenchymal Stem Cell Transplantation , Animals , Humans , Combined Modality Therapy/methods , Disease Models, Animal , Disease Progression , Liver/pathology , Liver/drug effects , Liver Cirrhosis/pathology , Liver Cirrhosis/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells , Randomized Controlled Trials as Topic , Treatment Outcome
20.
J Chem Theory Comput ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39279636

ABSTRACT

The particle-particle random phase approximation (ppRPA) within the hole-hole channel was recently proposed as an efficient tool for computing excitation energies of point defects in solids [J. Phys. Chem. Lett. 2024, 15, 2757-2764]. In this work, we investigate the application of ppRPA within the particle-particle channel for predicting correlated excited states of point defects, including the carbon-vacancy (VC) in diamond, the oxygen-vacancy (VO) in magnesium oxide (MgO), and the carbon dimer defect (CBCN) in two-dimensional hexagonal boron nitride (h-BN). Starting from a density functional theory calculation of the (N - 2)-electron ground state, vertical excitation energies of the N-electron system are obtained as the differences between the two-electron addition energies. We show that active-space ppRPA with the B3LYP functional yields accurate excitation energies, with errors mostly smaller than 0.1 eV for tested systems compared to available experimental values. We further develop a natural transition orbital scheme within ppRPA, which provides insights into the multireference character of defect states. This study, together with our previous work, establishes ppRPA as a low-cost and accurate method for investigating excited-state properties of point defect systems.

SELECTION OF CITATIONS
SEARCH DETAIL