Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
3.
Article in English | MEDLINE | ID: mdl-37623174

ABSTRACT

Diet is the primary exposure pathway for phthalates, but relative contributions of other exposure sources are not well characterized. This study quantifies the relative contribution of indoor residential dust phthalate and phthalate alternative concentrations to total internal dose estimated from the National Health and Nutrition Examination Survey (NHANES) urinary metabolite concentrations. Specifically, median phthalate and phthalate alternative concentrations measured in residential dust were determined by updating a pre-existing systematic review and meta-analysis published in 2015 and the attributable internal dose was estimated using intake and reverse dosimetry models. Employing a predetermined search strategy, 12 studies published between January 2000 and April 2022 from Web of Science and PubMed measuring phthalates and phthalate alternatives in residential dust were identified. From the data extracted, it was estimated that dust contributed more significantly to the internal dose of low-molecular weight chemicals such as DEP and BBP when compared to high-molecular weight chemicals such as DEHTP. Additionally, findings showed that the chemical profile of residential dust is changing temporally with more phthalate alternatives being detected in the indoor environment. Future studies should seek to characterize the contribution of dust to an overall phthalate and phthalate alternative intake for individuals who have higher than normal exposures.


Subject(s)
Phthalic Acids , Humans , Nutrition Surveys , Dust , Molecular Weight , Thinness
4.
Article in English | MEDLINE | ID: mdl-36767480

ABSTRACT

There is growing evidence of toxicity associated with ingredients found in cosmetics and personal care products. Children's makeup and body products (CMBPs) are widely marketed to children throughout the US; however, little is known about how and why children use them. We administered a survey to parents/guardians of children aged ≤12 years about the use of CMBPs. Among all the children (n = 312) of survey respondents (n = 207), 219 (70%) have used CMBPs in their lifetime. Older children used CMBPs at higher rates than younger children, and female children used CMBPs at higher rates than male children. Children of Hispanic/Latinx parents/guardians used CMBPs more often and for shorter durations and a greater proportion used lip, hair, and fragrance products than children of non-Hispanic parents/guardians. Approximately half the children that use CMBPs were reported to use them with play intentions. Compared to children of non-Hispanic parents/guardians, children of Hispanic/Latinx parents/guardians reported more play motivations for CMBP use. Using qualitative analysis approaches, responses suggest CMBPs are commonly used for fun or play activities. This mixed methods analysis serves as an introduction to understanding early life exposures to this unique and understudied class of products.


Subject(s)
Cosmetics , Environmental Exposure , Humans , Child , Male , Female , United States , Adolescent , Surveys and Questionnaires
5.
Environ Health ; 21(Suppl 1): 121, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635700

ABSTRACT

BACKGROUND: Understanding, characterizing, and quantifying human exposures to environmental chemicals is critical to protect public health. Exposure assessments are key to determining risks to the general population and for specific subpopulations given that exposures differ between groups. Exposure data are also important for understanding where interventions, including public policies, should be targeted and the extent to which interventions have been successful. In this review, we aim to show how inadequacies in exposure assessments conducted by polluting industries or regulatory agencies have led to downplaying or disregarding exposure concerns raised by communities; that underestimates of exposure can lead regulatory agencies to conclude that unacceptable risks are, instead, acceptable, allowing pollutants to go unregulated; and that researchers, risk assessors, and policy makers need to better understand the issues that have affected exposure assessments and how appropriate use of exposure data can contribute to health-protective decisions. METHODS: We describe current approaches used by regulatory agencies to estimate human exposures to environmental chemicals, including approaches to address limitations in exposure data. We then illustrate how some exposure assessments have been used to reach flawed conclusions about environmental chemicals and make recommendations for improvements. RESULTS: Exposure data are important for communities, public health advocates, scientists, policy makers, and other groups to understand the extent of environmental exposures in diverse populations. We identify four areas where exposure assessments need to be improved due to systemic sources of error or uncertainty in exposure assessments and illustrate these areas with examples. These include: (1) an inability of regulatory agencies to keep pace with the increasing number of chemicals registered for use or assess their exposures, as well as complications added by use of 'confidential business information' which reduce available exposure data; (2) the failure to keep assessments up-to-date; (3) how inadequate assumptions about human behaviors and co-exposures contribute to underestimates of exposure; and (4) that insufficient models of toxicokinetics similarly affect exposure estimates. CONCLUSION: We identified key issues that impact capacity to conduct scientifically robust exposure assessments. These issues must be addressed with scientific or policy approaches to improve estimates of exposure and protect public health.


Subject(s)
Environmental Exposure , Environmental Pollutants , Humans , Environmental Exposure/adverse effects , Environmental Exposure/prevention & control , Environmental Pollutants/toxicity , Environmental Pollutants/analysis , Public Health , Public Policy , Uncertainty , Risk Assessment
6.
Environ Health ; 21(Suppl 1): 132, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635734

ABSTRACT

The manufacture and production of industrial chemicals continues to increase, with hundreds of thousands of chemicals and chemical mixtures used worldwide, leading to widespread population exposures and resultant health impacts. Low-wealth communities and communities of color often bear disproportionate burdens of exposure and impact; all compounded by regulatory delays to the detriment of public health. Multiple authoritative bodies and scientific consensus groups have called for actions to prevent harmful exposures via improved policy approaches. We worked across multiple disciplines to develop consensus recommendations for health-protective, scientific approaches to reduce harmful chemical exposures, which can be applied to current US policies governing industrial chemicals and environmental pollutants. This consensus identifies five principles and scientific recommendations for improving how agencies like the US Environmental Protection Agency (EPA) approach and conduct hazard and risk assessment and risk management analyses: (1) the financial burden of data generation for any given chemical on (or to be introduced to) the market should be on the chemical producers that benefit from their production and use; (2) lack of data does not equate to lack of hazard, exposure, or risk; (3) populations at greater risk, including those that are more susceptible or more highly exposed, must be better identified and protected to account for their real-world risks; (4) hazard and risk assessments should not assume existence of a "safe" or "no-risk" level of chemical exposure in the diverse general population; and (5) hazard and risk assessments must evaluate and account for financial conflicts of interest in the body of evidence. While many of these recommendations focus specifically on the EPA, they are general principles for environmental health that could be adopted by any agency or entity engaged in exposure, hazard, and risk assessment. We also detail recommendations for four priority areas in companion papers (exposure assessment methods, human variability assessment, methods for quantifying non-cancer health outcomes, and a framework for defining chemical classes). These recommendations constitute key steps for improved evidence-based environmental health decision-making and public health protection.


Subject(s)
Environmental Pollutants , Humans , Environmental Exposure/adverse effects , Environmental Exposure/prevention & control , Environmental Health , Environmental Pollutants/analysis , Public Health , Risk Assessment , Consensus Development Conferences as Topic
7.
Environ Epigenet ; 8(1): dvac005, 2022.
Article in English | MEDLINE | ID: mdl-35355955

ABSTRACT

Metastable epialleles (MEs) are genomic regions that are stochastically methylated prior to germ layer specification and exhibit high interindividual but low intra-individual variability across tissues. ME methylation is vulnerable to environmental stressors, including diet. Tobacco smoke (TS) exposure during pregnancy is associated with adverse impacts on fetal health and maternal micronutrient levels as well as altered methylation. Our objective was to determine if maternal smoke exposure impacts methylation at MEs. Consistent with prior studies, we observed reductions in one-carbon pathway micronutrients with gestational TS exposure, including maternal folate (P = 0.02) and vitamins B6 (P = 0.05) and B12 (P = 0.007). We examined putative MEs BOLA3, PAX8, and ZFYVE28 in cord blood specimens from 85 Newborn Epigenetics STudy participants. Gestational TS exposure was associated with elevated DNA methylation at PAX8 (+5.22% average methylation; 95% CI: 0.33% to 10.10%; P = 0.037). In human conceptal kidney tissues, higher PAX8 transcription was associated with lower methylation (R s = 0.55; P = 0.07), suggesting that the methylation levels established at MEs, and their environmentally induced perturbation, may have meaningful, tissue-specific functional consequences. This may be particularly important because PAX8 is implicated in several cancers, including pediatric kidney cancer. Our data are the first to indicate vulnerability of human ME methylation establishment to TS exposure, with a general trend of increasing levels of methylation at these loci. Further investigation is needed to determine how TS exposure-mediated changes in DNA methylation at MEs, and consequent expression levels, might affect smoking-related disease risk.

8.
Neurotoxicology ; 89: 41-54, 2022 03.
Article in English | MEDLINE | ID: mdl-35026373

ABSTRACT

Nicotine is a neuroteratogenic component of tobacco smoke, e-cigarettes, and other products and can exert sex-specific effects in the developing brain, likely mediated through sex hormones. Estradiol modulates expression of nicotinic acetylcholine receptors in rats, and plays critical roles in neurodevelopmental processes, including sexual differentiation of the brain. Here, we examined the effects of developmental nicotine exposure on the sexual differentiation of the preoptic area (POA), a brain region that normally displays robust structural sexual dimorphisms and controls adult mating behavior in rodents. Using a rat model of gestational exposure, developing pups were exposed to nicotine (2 mg/kg/day) via maternal osmotic minipump (subcutaneously, sc) throughout the critical window for brain sexual differentiation. At postnatal day (PND) 4, a subset of offspring was analyzed for epigenetic effects in the POA. At PND40, all offspring were gonadectomized, implanted with a testosterone-releasing capsule (sc), and assessed for male sexual behavior at PND60. Following sexual behavior assessment, the area of the sexually dimorphic nucleus of the POA (SDN-POA) was measured using immunofluorescent staining techniques. In adults, normal sex differences in male sexual behavior and in the SDN-POA area were eliminated in nicotine-treated animals. Using novel analytical approaches to evaluate overall masculinization of the adult POA, we identified significant masculinization of the nicotine-treated female POA. In neonates (PND4), nicotine exposure induced trending alterations in methylation-dependent masculinizing gene expression and DNA methylation levels at sexually-dimorphic differentially methylated regions, suggesting that developmental nicotine exposure is capable of triggering masculinization of the rat POA via epigenetic mechanisms.


Subject(s)
Electronic Nicotine Delivery Systems , Preoptic Area , Animals , Female , Male , Nicotine/toxicity , Preoptic Area/metabolism , Rats , Sex Characteristics , Sex Differentiation , Testosterone
9.
MicroPubl Biol ; 20212021.
Article in English | MEDLINE | ID: mdl-34423283

ABSTRACT

DNA methylation is an important epigenetic mechanism involved in proper genome function. Bisulfite pyrosequencing (PSQ) is a commonly used technique to quantify DNA methylation. Although very accurate, bisulfite pyrosequencing can be expensive and time consuming for large-scale quantitative DNA methylation analysis at the single nucleotide level. High throughput DNA methylation sequencing has the potential to address these limitations, but its comparability to other methylation detection methods has not been well studied. We compared QIAseq Targeted Methyl Panel technologies (QMS) and PSQ by analyzing four CpG sites within four genes involved in neurodevelopment. QMS and PSQ had an average 5.6% difference in the detected level of DNA methylation for the same four CpG sites. However, we observed a strong correlation in the levels of methylation across all four CpG sites between the two technologies. These findings demonstrate the comparability of QMS relative to PSQ in the ability to accurately quantify DNA methylation at specific CpG sites.

10.
Redox Biol ; 43: 102000, 2021 07.
Article in English | MEDLINE | ID: mdl-33993056

ABSTRACT

The consequences of damage to the mitochondrial genome (mtDNA) are poorly understood, although mtDNA is more susceptible to damage resulting from some genotoxicants than nuclear DNA (nucDNA), and many environmental toxicants target the mitochondria. Reports from the toxicological literature suggest that exposure to early-life mitochondrial damage could lead to deleterious consequences later in life (the "Developmental Origins of Health and Disease" paradigm), but reports from other fields often report beneficial ("mitohormetic") responses to such damage. Here, we tested the effects of low (causing no change in lifespan) levels of ultraviolet C (UVC)-induced, irreparable mtDNA damage during early development in Caenorhabditis elegans. This exposure led to life-long reductions in mtDNA copy number and steady-state ATP levels, accompanied by increased oxygen consumption and altered metabolite profiles, suggesting inefficient mitochondrial function. Exposed nematodes were also developmentally delayed, reached smaller adult size, and were rendered more susceptible to subsequent exposure to chemical mitotoxicants. Metabolomic and genetic analysis of key signaling and metabolic pathways supported redox and mitochondrial stress-response signaling during early development as a mechanism for establishing these persistent alterations. Our results highlight the importance of early-life exposures to environmental pollutants, especially in the context of exposure to chemicals that target mitochondria.


Subject(s)
Caenorhabditis elegans , DNA Damage , Animals , Caenorhabditis elegans/genetics , DNA, Mitochondrial/metabolism , Mitochondria/metabolism , Oxidation-Reduction
11.
BMC Cardiovasc Disord ; 21(1): 160, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33789592

ABSTRACT

OBJECTIVE: Prevention of recurrent stroke in patients with embolic stroke of undetermined source (ESUS) is challenging. The advent of safer anticoagulation in the form of direct oral anticoagulants (DOACs) has prompted exploration of prophylactic anticoagulation for all ESUS patients, rather than anticoagulating just those with documented atrial fibrillation (AF). However, recent trials have failed to demonstrate a clinical benefit, while observing increased bleeding. We modeled the economic impact of anticoagulating ESUS patients without documented AF across multiple geographies. METHODS: CRYSTAL-AF trial data were used to assess ischaemic stroke event rates in ESUS patients confirmed AF-free after long-term monitoring. Anticipated bleeding event rates (including both minor and major bleeds) with aspirin, dabigatran 150 mg, and rivaroxaban 20 mg were sourced from published meta-analyses, whilst a 30% ischaemic stroke reduction for both DOACs was assumed. Cost data for clinical events and pharmaceuticals were collected from the local payer perspective. RESULTS: Compared with aspirin, dabigatran and rivaroxaban resulted in 17.9 and 29.9 additional bleeding events per 100 patients over a patient's lifetime, respectively. Despite incorporating into our model the proposed 30% reduction in ischaemic stroke risk, both DOACs were cost-additive over patient lifetime, as the costs of bleeding events and pharmaceuticals outweighed cost savings associated with the reduction in ischaemic strokes. DOACs added £5953-£7018 per patient (UK), €6683-€7368 (Netherlands), €4933-€9378 (Spain), AUD$5353-6539 (Australia) and $26,768-$32,259 (US) of payer cost depending on the agent prescribed. Additionally, in the U.S. patient pharmacy co-payments ranged from $2468-$12,844 depending on agent and patient plan. In all settings, cost-savings could not be demonstrated even when the modelling assumed 100% protection from recurrent ischaemic strokes, due to the very low underlying risk of recurrent ischaemic stroke in this population (1.27 per 100 patient-years). CONCLUSIONS: Anticoagulation of non-AF patients may cause excess bleeds and add substantial costs for uncertain benefits, suggesting a personalised approach to anticoagulation in ESUS patients.


Subject(s)
Anticoagulants/adverse effects , Anticoagulants/economics , Drug Costs , Embolic Stroke/economics , Embolic Stroke/prevention & control , Hemorrhage/chemically induced , Ischemic Stroke/economics , Ischemic Stroke/prevention & control , Secondary Prevention/economics , Administration, Oral , Anticoagulants/administration & dosage , Aspirin/adverse effects , Aspirin/economics , Clinical Trials as Topic , Cost-Benefit Analysis , Dabigatran/adverse effects , Dabigatran/economics , Embolic Stroke/epidemiology , Humans , Ischemic Stroke/epidemiology , Models, Economic , Recurrence , Retrospective Studies , Risk Assessment , Risk Factors , Rivaroxaban/adverse effects , Rivaroxaban/economics , Time Factors , Treatment Outcome
12.
Curr Protoc Toxicol ; 67: 20.11.1-20.11.25, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26828332

ABSTRACT

Because of the role that DNA damage and depletion play in human disease, it is important to develop and improve tools to assess these endpoints. This unit describes PCR-based methods to measure nuclear and mitochondrial DNA damage and copy number. Long amplicon quantitative polymerase chain reaction (LA-QPCR) is used to detect DNA damage by measuring the number of polymerase-inhibiting lesions present based on the amount of PCR amplification; real-time PCR (RT-PCR) is used to calculate genome content. In this unit, we provide step-by-step instructions to perform these assays in Homo sapiens, Mus musculus, Rattus norvegicus, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Oryzias latipes, Fundulus grandis, and Fundulus heteroclitus, and discuss the advantages and disadvantages of these assays.


Subject(s)
Cell Nucleus/genetics , DNA Copy Number Variations/genetics , DNA Damage , DNA, Mitochondrial/genetics , Polymerase Chain Reaction/methods , Animals , DNA Mutational Analysis , DNA Primers/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL