Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; 278(Pt 2): 134615, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39128743

ABSTRACT

The application of bone grafting materials in bone tissue engineering is paramount for treating severe bone defects. In this comprehensive review, we explore the significance and novelty of utilizing bioactive polymers as grafts for successful bone repair. Unlike metals and ceramics, polymers offer inherent biodegradability and biocompatibility, mimicking the native extracellular matrix of bone. While these polymeric micro-nano materials may face challenges such as mechanical strength, various fabrication techniques are available to overcome these shortcomings. Our study not only investigates diverse biopolymeric materials but also illuminates innovative fabrication methods, highlighting their importance in advancing bone tissue engineering.

2.
Cell Commun Signal ; 22(1): 228, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622735

ABSTRACT

Cancer is a major public health problem worldwide with more than an estimated 19.3 million new cases in 2020. The occurrence rises dramatically with age, and the overall risk accumulation is combined with the tendency for cellular repair mechanisms to be less effective in older individuals. Conventional cancer treatments, such as radiotherapy, surgery, and chemotherapy, have been used for decades to combat cancer. However, the emergence of novel fields of cancer research has led to the exploration of innovative treatment approaches focused on immunotherapy, epigenetic therapy, targeted therapy, multi-omics, and also multi-target therapy. The hypothesis was based on that drugs designed to act against individual targets cannot usually battle multigenic diseases like cancer. Multi-target therapies, either in combination or sequential order, have been recommended to combat acquired and intrinsic resistance to anti-cancer treatments. Several studies focused on multi-targeting treatments due to their advantages include; overcoming clonal heterogeneity, lower risk of multi-drug resistance (MDR), decreased drug toxicity, and thereby lower side effects. In this study, we'll discuss about multi-target drugs, their benefits in improving cancer treatments, and recent advances in the field of multi-targeted drugs. Also, we will study the research that performed clinical trials using multi-target therapeutic agents for cancer treatment.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Aged , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Drug Delivery Systems
3.
Opt Express ; 29(5): 7134-7144, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33726220

ABSTRACT

We present an ab initio study of the quantum dynamics of high-order harmonic generation (HHG) near the cutoff in intense laser fields. To uncover the subtle dynamical origin of the HHG near the cutoff, we extend the Bohmian mechanics (BM) approach for the treatment of attosecond electronic dynamics of H and Ar atoms in strong laser fields. The time-dependent Schrödinger equation and the self-interaction-free time-dependent density functional theory are numerically solved accurately and efficiently by means of the time-dependent generalized pseudospectral method for nonuniform spatial discretization of the Hamiltonian. We find that the most devoting trajectories calculated by the BM to the plateau harmonics are shorter traveling trajectories, but the contributions of the short trajectories near the cutoff are suppressed in HHG. As a result, the yields of those harmonics in the region near the cutoff are relatively weak. However, for the last few harmonics just above the cutoff, the HHG intensity becomes a little higher. This is because the HHG just above the cutoff arises from those electrons ionized near the peak of the laser pulse, where the ionization rate is the highest. In addition, the longer Bohmian trajectories return to the core with lower energies, these trajectories contribute to the below-threshold harmonics. Our results provide a deeper understanding of the generation of supercontinuum harmonic spectra and attosecond pulses via near cutoff HHG.

4.
Sci Rep ; 8(1): 4873, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29559653

ABSTRACT

We study the temperature dependence of the underlying mechanisms related to the signal strength and imaging depth in photoacoustic imaging. The presented theoretical and experimental results indicate that imaging depth can be improved by lowering the temperature of the intermediate medium that the laser passes through to reach the imaging target. We discuss the temperature dependency of optical and acoustic properties of the intermediate medium and their changes due to cooling. We demonstrate that the SNR improvement of the photoacoustic signal is mainly due to the reduction of Grüneisen parameter of the intermediate medium which leads to a lower level of background noise. These findings may open new possibilities toward the application of biomedical laser refrigeration.

5.
Sci Rep ; 6: 37544, 2016 11 21.
Article in English | MEDLINE | ID: mdl-27869230

ABSTRACT

We propose a graph-theoretical formalism to study generic circuit quantum electrodynamics systems consisting of a two level qubit coupled with a single-mode resonator in arbitrary coupling strength regimes beyond rotating-wave approximation. We define colored-weighted graphs, and introduce different products between them to investigate the dynamics of superconducting qubits in transverse, longitudinal, and bidirectional coupling schemes. The intuitive and predictive picture provided by this method, and the simplicity of the mathematical construction, are demonstrated with some numerical studies of the multiphoton resonance processes and quantum interference phenomena for the superconducting qubit systems driven by intense ac fields.

6.
Sci Rep ; 6: 32763, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27596056

ABSTRACT

Multiple rescattering processes play an important role in high-order harmonic generation (HHG) in an intense laser field. However, the underlying multi-rescattering dynamics are still largely unexplored. Here we investigate the dynamical origin of multiple rescattering processes in HHG associated with the odd and even number of returning times of the electron to the parent ion. We perform fully ab initio quantum calculations and extend the empirical mode decomposition method to extract the individual multiple scattering contributions in HHG. We find that the tunneling ionization regime is responsible for the odd number times of rescattering and the corresponding short trajectories are dominant. On the other hand, the multiphoton ionization regime is responsible for the even number times of rescattering and the corresponding long trajectories are dominant. Moreover, we discover that the multiphoton- and tunneling-ionization regimes in multiple rescattering processes occur alternatively. Our results uncover the dynamical origin of multiple rescattering processes in HHG for the first time. It also provides new insight regarding the control of the multiple rescattering processes for the optimal generation of ultrabroad band supercontinuum spectra and the production of single ultrashort attosecond laser pulse.

SELECTION OF CITATIONS
SEARCH DETAIL