Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Article in English | MEDLINE | ID: mdl-38692838

ABSTRACT

Understanding the processes that drive phenotypic diversification and underpin speciation is key to elucidating how biodiversity has evolved. Although these processes have been studied across a wide array of clades, adaptive radiations (ARs), which are systems with multiple closely related species and broad phenotypic diversity, have been particularly fruitful for teasing apart the factors that drive and constrain diversification. As such, ARs have become popular candidate study systems for determining the extent to which ecological features, including aspects of organisms and the environment, and inter- and intraspecific interactions, led to evolutionary diversification. Despite substantial past empirical and theoretical work, understanding mechanistically how ARs evolve remains a major challenge. Here, we highlight a number of understudied components of the environment and of lineages themselves, which may help further our understanding of speciation and AR. We also outline some substantial remaining challenges to achieving a detailed understanding of adaptation, speciation, and the role of ecology in these processes. These major challenges include identifying factors that have a causative impact in promoting or constraining ARs, gaining a more holistic understanding of features of organisms and their environment that interact resulting in adaptation and speciation, and understanding whether the role of these organismal and environmental features varies throughout the radiation process. We conclude by providing perspectives on how future investigations into the AR process can overcome these challenges, allowing us to glean mechanistic insights into adaptation and speciation.

2.
Proc Biol Sci ; 290(1997): 20222513, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37122248

ABSTRACT

The Western Ghats (WG) mountain chain is a global biodiversity hotspot with high diversity and endemicity of woody plants. The latitudinal breadth of the WG offers an opportunity to determine the evolutionary drivers of latitudinal diversity patterns. We examined the spatial patterns of evolutionary diversity using complementary phylogenetic diversity and endemism measures. To examine if different regions of the WG serve as a museum or cradle of evolutionary diversity, we examined the distribution of 470 species based on distribution modelling and occurrence locations across the entire region. In accordance with the expectation, we found that the southern WG is both a museum and cradle of woody plant evolutionary diversity, as a higher proportion of both old and young evolutionary lineages are restricted to the southern WG. The diversity gradient is likely driven by high geo-climatic stability in the south and phylogenetic niche conservatism for moist and aseasonal sites. This is corroborated by persistent lineage nestedness at almost all evolutionary depths (10-135 million years), and a strong correlation of evolutionary diversity with drought seasonality, precipitation and topographic heterogeneity. Our results highlight the global value of the WG, demonstrating, in particular, the importance of protecting the southern WG-an engine of plant diversification and persistence.


Subject(s)
Museums , Wood , Phylogeny , Biological Evolution , Biodiversity
3.
Glob Ecol Biogeogr ; 32(9): 1508-1521, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38708411

ABSTRACT

Aim: To investigate the drivers of intra-specific genetic diversity in centipedes, a group of ancient predatory soil arthropods. Location: Asia, Australasia and Europe. Time Period: Present. Major Taxa Studied: Centipedes (Class: Chilopoda). Methods: We assembled a database of 1245 mitochondrial cytochrome c oxidase subunit I sequences representing 128 centipede species from all five orders of Chilopoda. This sequence dataset was used to estimate genetic diversity for centipede species and compare its distribution with estimates from other arthropod groups. We studied the variation in centipede genetic diversity with species traits and biogeography using a beta regression framework, controlling for the effect of shared evolutionary history within a family. Results: A wide variation in genetic diversity across centipede species (0-0.1713) falls towards the higher end of values among arthropods. Overall, 27.57% of the variation in mitochondrial COI genetic diversity in centipedes was explained by a combination of predictors related to life history and biogeography. Genetic diversity decreased with body size and latitudinal position of sampled localities, was greater in species showing maternal care and increased with geographic distance among conspecifics. Main Conclusions: Centipedes fall towards the higher end of genetic diversity among arthropods, which may be related to their long evolutionary history and low dispersal ability. In centipedes, the negative association of body size with genetic diversity may be mediated by its influence on local abundance or the influence of ecological strategy on long-term population history. Species with maternal care had higher genetic diversity, which goes against expectations and needs further scrutiny. Hemispheric differences in genetic diversity can be due to historic climatic stability and lower seasonality in the southern hemisphere. Overall, we find that despite the differences in mean genetic diversity among animals, similar processes related to life-history strategy and biogeography are associated with the variation within them.

4.
Ecol Evol ; 11(23): 16499-16513, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34938452

ABSTRACT

The Western Ghats (WG) mountain chain in peninsular India is a global biodiversity hotspot, one in which patterns of phylogenetic diversity and endemism remain to be documented across taxa. We used a well-characterized community of ancient soil predatory arthropods from the WG to understand diversity gradients, identify hotspots of endemism and conservation importance, and highlight poorly studied areas with unique biodiversity. We compiled an occurrence dataset for 19 species of scolopendrid centipedes, which was used to predict areas of habitat suitability using bioclimatic and geomorphological variables in Maxent. We used predicted distributions and a time-calibrated species phylogeny to calculate taxonomic and phylogenetic indices of diversity, endemism, and turnover. We observed a decreasing latitudinal gradient in taxonomic and phylogenetic diversity in the WG, which supports expectations from the latitudinal diversity gradient. The southern WG had the highest phylogenetic diversity and endemism, and was represented by lineages with long branch lengths as observed from relative phylogenetic diversity/endemism. These results indicate the persistence of lineages over evolutionary time in the southern WG and are consistent with predictions from the southern WG refuge hypothesis. The northern WG, despite having low phylogenetic diversity, had high values of phylogenetic endemism represented by distinct lineages as inferred from relative phylogenetic endemism. The distinct endemic lineages in this subregion might be adapted to life in lateritic plateaus characterized by poor soil conditions and high seasonality. Sites across an important biogeographic break, the Palghat Gap, broadly grouped separately in comparisons of species turnover along the WG. The southern WG and Nilgiris, adjoining the Palghat Gap, harbor unique centipede communities, where the causal role of climate or dispersal barriers in shaping diversity remains to be investigated. Our results highlight the need to use phylogeny and distribution data while assessing diversity and endemism patterns in the WG.

5.
Ecol Evol ; 11(3): 1399-1412, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33598140

ABSTRACT

Endozoochory, a mutualistic interaction between plants and frugivores, is one of the key processes responsible for maintenance of tropical biodiversity. Islands, which have a smaller subset of plants and frugivores when compared with mainland communities, offer an interesting setting to understand the organization of plant-frugivore communities vis-a-vis the mainland sites. We examined the relative influence of functional traits and phylogenetic relationships on the plant-seed disperser interactions on an island and a mainland site. The island site allowed us to investigate the organization of the plant-seed disperser community in the natural absence of key frugivore groups (bulbuls and barbets) of Asian tropics. The endemic Narcondam Hornbill was the most abundant frugivore on the island and played a central role in the community. Species strength of frugivores (a measure of relevance of frugivores for plants) was positively associated with their abundance. Among plants, figs had the highest species strength and played a central role in the community. Island-mainland comparison revealed that the island plant-seed disperser community was more asymmetric, connected, and nested as compared to the mainland community. Neither phylogenetic relationships nor functional traits (after controlling for phylogenetic relationships) were able to explain the patterns of interactions between plants and frugivores on the island or the mainland pointing toward the diffused nature of plant-frugivore interactions. The diffused nature is a likely consequence of plasticity in foraging behavior and trait convergence that contribute to governing the interactions between plants and frugivores. This is one of the few studies to compare the plant-seed disperser communities between a tropical island and mainland and demonstrates key role played by a point-endemic frugivore in seed dispersal on island.

6.
BMC Evol Biol ; 19(1): 56, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30764756

ABSTRACT

Following publication of the original article [1], the authors notified us of an error in the Results section of the Abstract. The original article has been corrected.

7.
BMC Evol Biol ; 19(1): 41, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30709332

ABSTRACT

BACKGROUND: Understanding the relative influence of vicariance and dispersal in shaping Old World tropical biodiversity remains a challenge. We aimed to infer the roles of these alternative biogeographic processes using a species time-tree for the centipede genus Ethmostigmus from the Old World tropics. Additionally, we explored fine-scale biogeographic patterns for an endemic radiation of Ethmostigmus from the peninsular Indian Plate (PIP), an area with complex geological and climatic history. RESULTS: Divergence time estimates suggest that Ethmostigmus began diversifying in the Late Cretaceous, 99 (± 25) million years ago (Ma), its early biogeographic history shaped by vicariance. Members of Ethmostigmus in PIP form a monophyletic group that underwent endemic radiation in the Late Cretaceous, 72 (± 25) Ma. In contrast, a new species of Ethmostigmus from north-east India formed a clade with African/Australian species. Fine-scale biogeographic analyses in PIP predict that Indian Ethmostigmus had an ancestor in southern-central parts of the Western Ghats. This was followed by four independent dispersal events from the southern-central Western Ghats to the Eastern Ghats, and between different parts of the Western Ghats in the Cenozoic. CONCLUSIONS: Our results are consistent with Gondwanan break-up driving the early evolutionary history of the genus Ethmostigmus. Multiple dispersal events coinciding with geo-climatic events throughout the Cenozoic shaped diversification in PIP. Ethmostigmus species in PIP are restricted to wet forests and have retained that niche throughout their diversification.


Subject(s)
Annelida/classification , Biodiversity , Models, Biological , Phylogeography , Animals , Australia , India , Species Specificity , Time Factors
8.
Ecol Evol ; 8(19): 9751-9763, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30386572

ABSTRACT

Natural selection by visually hunting predators has led to the evolution of color defense strategies such as masquerade, crypsis, and aposematism that reduce the risk of predation in prey species. These color defenses are not mutually exclusive, and switches between strategies with ontogenic development are widespread across taxa. However, the evolutionary dynamics of ontogenic color change are poorly understood. Using comparative phylogenetics, we studied the evolution of color defenses in the complex life cycles of swallowtail butterflies (family Papilionidae). We also tested the relative importance of life history traits, chemical and visual backgrounds, and ancestry on the evolution of protective coloration. We found that vulnerable early- and late-instar caterpillars of species that feed on sparsely vegetated, toxic plants were aposematic, whereas species that feed on densely vegetated, nontoxic plants had masquerading and cryptic caterpillars. Masquerading caterpillars resembled bird droppings at early instars and transitioned to crypsis with an increase in body size at late instars. The immobile pupae-safe from motion-detecting, visually hunting predators-retained the ancestral cryptic coloration in all lineages, irrespective of the toxic nature of the host plant. Thus, color defense strategy (masquerade, crypsis, or aposematism) at a particular lifestage in the life cycle of swallowtail butterflies was determined by the interaction between life history traits such as body size and motion levels, phytochemical and visual backgrounds, and ancestry. We show that ontogenic color change in swallowtail butterflies is an adaptive response to age-dependent vulnerability to predation.

9.
Am Nat ; 189(4): E58-E76, 2017 04.
Article in English | MEDLINE | ID: mdl-28350498

ABSTRACT

Species co-occurrence in ecological communities is thought to be influenced by multiple ecological and evolutionary processes, especially colonization and competition. However, effects of other interspecific interactions and evolutionary relationships are less explored. We examined evolutionary histories of community members and roles of mutualistic and parasitic interactions (Müllerian and Batesian mimicry, respectively) in the assembly of mimetic butterfly communities called mimicry rings in tropical forests of the Western Ghats, India. We found that Müllerian mimics were phylogenetically clustered, sharing aposematic signals due to common ancestry. On the other hand, Batesian mimics joined mimicry rings through convergent evolution and random phylogenetic assembly. Since the Western Ghats are a habitat island, we compared species diversity and composition in its mimicry rings with those of habitat mainland to test effects of biogeographic connectivity. The Western Ghats consisted of fewer mimicry rings and an overall smaller number of aposematic species and mimics compared to habitat mainland. The depauperate mimicry rings in the Western Ghats could have resulted from stochastic processes, reflecting their long temporal and spatial isolation and trickling colonization by the mimetic butterfly communities. These results highlight how evolutionary history, biogeographic isolation, and stochastic colonization influence the evolutionary assembly and diversity of ecological communities.


Subject(s)
Biological Mimicry , Butterflies , Phylogeny , Animals , Ecology , Ecosystem , India
10.
Ecol Evol ; 3(10): 3275-82, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24223267

ABSTRACT

The Western Ghats (WG) of south India, a global biodiversity hotspot, has experienced complex geological history being part of Gondwana landmass and encountered extensive volcanic activity at the end of Cretaceous epoch. It also has a climatically and topographically heterogeneous landscape. Thus, the WG offer a unique setting to explore the influence of ecological and geological processes on the current diversity and distribution of its biota. To this end, three explicit biogeographical scenarios were hypothesized to evaluate the distribution and diversification of wet evergreen species of the WG - (1) southern WG was a refuge for the wet evergreen species during the Cretaceous volcanism, (2) phylogenetic breaks in the species phylogeny would correspond to geographic breaks (i.e., the Palghat gap) in the WG, and (3) species from each of the biogeographic subdivisions within the WG would form distinct clades. These hypotheses were tested on the centipede genus Digitipes from the WG which is known to be an ancient, endemic, and monophyletic group. The Digitipes molecular phylogeny was subjected to divergence date estimation using Bayesian approach, and ancestral areas were reconstructed using parsimony approach for each node in the phylogeny. Ancestral-area reconstruction suggested 13 independent dispersal events to explain the current distribution of the Digitipes species in the WG. Among these 13 dispersals, two dispersal events were at higher level in the Digitipes phylogeny and were from the southern WG to the central and northern WG independently in the Early Paleocene, after the Cretaceous Volcanism. The remaining 11 dispersal events explained the species' range expansions of which nine dispersals were from the southern WG to other biogeographic subdivisions in the Eocene-Miocene in the post-volcanic periods where species-level diversifications occurred. Taken together, these results suggest that southern WG might have served as a refuge for Digitipes species during Cretaceous volcanism.

11.
Zootaxa ; 3626: 99-145, 2013.
Article in English | MEDLINE | ID: mdl-26176129

ABSTRACT

Recent work on molecular phylogenetics of Scolopendridae from the Western Ghats, Peninsular India, has suggested the presence of six cryptic species of the otostigmine Digitipes Attems, 1930, together with three species described in previous taxonomic work by Jangi and Dass (1984). Digitipes is the correct generic attribution for a monophyletic group of Indian species, these being united with three species from tropical Africa (including the type) that share a distomedial process on the ultimate leg femur of males that is otherwise unknown in Otostigminae. Second maxillary characters previously used in the diagnosis of Digitipes are dismissed because Indian species do not possess the putatively diagnostic character states. Two new species from the Western Ghats that correspond to groupings identified based on monophyly, sequence divergence and coalescent analysis using molecular data are diagnosed based on distinct morphological characters. They are D. jangii and D. periyarensis n. spp. Three species named by Jangi and Dass (Digitipes barnabasi, D. coonoorensis and D. indicus) are revised based on new collections; D. indicus is a junior subjective synonym of Arthrorhabdus jonesii Verhoeff, 1938, the combination becoming Digitipesjonesii (Verhoeff, 1938) n. comb. The presence of Arthrorhabdus in India is accordingly refuted. Three putative species delimited by molecular and ecological data remain cryptic from the perspective of diagnostic morphological characters and are presently retained in D. barnabasi, D. jangii and D. jonesii. A molecularly-delimited species that resolved as sister group to a well-supported clade of Indian Digitipes is identified as Otostigmus ruficeps Pocock, 1890, originally described from a single specimen and revised herein. One Indian species originally assigned to Digitipes, D. gravelyi, deviates from confidently-assigned Digitipes with respect to several characters and is reassigned to Otostigmus, as O. gravelyi (Jangi and Dass, 1984) n. comb.


Subject(s)
Arthropods/anatomy & histology , Arthropods/classification , Biodiversity , Animals , Arthropods/genetics , Female , India , Male , Phylogeny
12.
PLoS One ; 7(8): e42225, 2012.
Article in English | MEDLINE | ID: mdl-22876311

ABSTRACT

BACKGROUND: There has been growing interest in integrative taxonomy that uses data from multiple disciplines for species delimitation. Typically, in such studies, monophyly is taken as a proxy for taxonomic distinctiveness and these units are treated as potential species. However, monophyly could arise due to stochastic processes. Thus here, we have employed a recently developed tool based on coalescent approach to ascertain the taxonomic distinctiveness of various monophyletic units. Subsequently, the species status of these taxonomic units was further tested using corroborative evidence from morphology and ecology. This inter-disciplinary approach was implemented on endemic centipedes of the genus Digitipes (Attems 1930) from the Western Ghats (WG) biodiversity hotspot of India. The species of the genus Digitipes are morphologically conserved, despite their ancient late Cretaceous origin. PRINCIPAL FINDINGS: Our coalescent analysis based on mitochondrial dataset indicated the presence of nine putative species. The integrative approach, which includes nuclear, morphology, and climate datasets supported distinctiveness of eight putative species, of which three represent described species and five were new species. Among the five new species, three were morphologically cryptic species, emphasizing the effectiveness of this approach in discovering cryptic diversity in less explored areas of the tropics like the WG. In addition, species pairs showed variable divergence along the molecular, morphological and climate axes. CONCLUSIONS: A multidisciplinary approach illustrated here is successful in discovering cryptic diversity with an indication that the current estimates of invertebrate species richness for the WG might have been underestimated. Additionally, the importance of measuring multiple secondary properties of species while defining species boundaries was highlighted given variable divergence of each species pair across the disciplines.


Subject(s)
Arthropods/genetics , Biodiversity , Models, Genetic , Animals , Arthropods/anatomy & histology , Arthropods/classification , DNA, Mitochondrial/genetics , Evolution, Molecular , India , Phylogeny , Phylogeography , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 28S/genetics
13.
Mol Phylogenet Evol ; 60(3): 287-94, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21575731

ABSTRACT

Given that peninsular India was part of the Gondwanan super continent, part of its current biota has Gondwanan origin. To determine the Gondwanan component of the peninsular Indian biota, a large number of species spanning diverse taxonomic groups need to be sampled from multiple, if not all, of the former Gondwanan fragments. Such a large scale phylogenetic approach will be time consuming and resource intensive. Here, we explore the utility of a limited sampling approach, wherein sampling is confined to one of the Gondwanan fragments (peninsular India), in identifying putative Gondwanan elements. To this end, samples of Scolopendrid centipedes from Western Ghats region of peninsular India were subjected to molecular phylogenetic and dating analyses. The resulting phylogenetic tree supported monophyly of the family Scolopendridae which was in turn split into two clades constituting tribes Otostigmini and Scolopendrini-Asanadini. Bayesian divergence date estimates suggested that the earliest diversifications within various genera were between 86 and 73mya, indicating that these genera might have Gondwanan origin. In particular, at least four genera of Scolopendrid centipedes, Scolopendra, Cormocephalus, Rhysida and Digitipes, might have undergone diversification on the drifting peninsular India during the Late Cretaceous. These putative Gondwanan taxa can be subjected to more extensive sampling to confirm their Gondwanan origin.


Subject(s)
Arthropods/classification , Biological Evolution , Phylogeny , Animals , Arthropods/genetics , Bayes Theorem , DNA, Mitochondrial/genetics , Fossils , India , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
14.
J Biosci ; 32(4): 769-74, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17762150

ABSTRACT

Many species of animal-pollinated flowers are known to vary widely in the nectar content of flowers. Some proportion of flowers in many species is apparently nectarless,and such flowers are believed to be 'cheaters'. Cheating may explain a part of the variability in nectar content.If cheating exists as a qualitatively different strategy then we expect bimodality in the distribution of nectar content of flowers. It has been shown in a multispecies study that gregarious species have a higher proportion of cheater flowers. We studied the frequency distribution of total nectar sugar in two gregariously flowering species Lantana camara and Utricularia purpurascens, which differed in other floral and ecological characters. At the population level, both the species showed significant bimodality in the total sugar content of flowers. The obvious sources of heterogeneity in the data did not explain bimodality. In Lantana camara, bimodality was observed within flowers of some of the individual plants sampled. In Utricularia purpurascens the proportion of nectarless flowers was more in high-density patches, suggesting that the gregariousness hypothesis may work within a species as well. The results support the hypothesis of cheating as a distinct strategy since two distinct types of flowers were observed in both the species. The effect of density in Utricularia purpurascens also supports the gregariousness hypothesis.


Subject(s)
Carbohydrates , Flowers , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL