Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Food Res Int ; 187: 114427, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763677

ABSTRACT

The scourge of obesity arising from obesogens and poor dieting still ravages our planet as half of the global population may be overweight and obese by 2035. This metabolic disorder is intertwined with type 2 diabetes (T2D), both of which warrant alternative therapeutic options other than clinically approved drugs like orlistat with their tendency of abuse and side effects. In this review, we comprehensively describe the global obesity problem and its connection to T2D. Obesity, overconsumption of fats, the mechanism of fat digestion, obesogenic gut microbiota, inhibition of fat digestion, and natural anti-obesity compounds are discussed. Similar discussions are made for diabetes with regard to glucose regulation, the diabetic gut microbiota, and insulinotropic compounds. The sources and production of anti-obesity bioactive peptides (AOBPs) and anti-diabetic bioactive peptides (ADBPs) are also described while explaining their structure-function relationships, gastrointestinal behaviors, and action mechanisms. Finally, the techno-functional applications of AOBPs and ADBPs are highlighted.


Subject(s)
Anti-Obesity Agents , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Hypoglycemic Agents , Obesity , Peptides , Humans , Obesity/drug therapy , Peptides/pharmacology , Peptides/therapeutic use , Anti-Obesity Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Gastrointestinal Microbiome/drug effects , Animals
2.
Food Chem ; 428: 136678, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37418874

ABSTRACT

Minerals including calcium, iron, zinc, magnesium, and copper have several human nutritional functions due to their metabolic activities. Body tissues require sufficient levels of a variety of micronutrients to maintain their health. To achieve these micronutrient needs, dietary consumption must be adequate. Dietary proteins may regulate the biological functions of the body in addition to acting as nutrients. Some peptides encoded in the native protein sequences are primarily responsible for the absorption and bioavailability of minerals in physiological functions. Metal-binding peptides (MBPs) were discovered as potential agents for mineral supplements. Nevertheless, sufficient studies on how MBPs affect the biological functions of minerals are lacking. The hypothesis is that the absorption and bioavailability of minerals are significantly influenced by peptides, and these properties are further enhanced by the configuration and attribute of the metal-peptide complex. In this review, the production of MBPs is discussed using various key parameters such as the protein sources and amino acid residues, enzymatic hydrolysis, purification, sequencing and synthesis and in silico analysis of MBPs. The mechanisms of metal-peptide complexes as functional food ingredients are elucidated, including metal-peptide ratio, precursors and ligands, complexation reaction, absorbability and bioavailability. Finally, the characteristics and application of different metal-peptide complexes are also described.


Subject(s)
Iron , Minerals , Humans , Biological Availability , Minerals/metabolism , Diet , Peptides/metabolism , Micronutrients , Chelating Agents
4.
Article in English | MEDLINE | ID: mdl-37264621

ABSTRACT

Currently, many advances have been made in avoiding food contamination by numerous pathogenic and toxigenic microorganisms. Many studies have shown that different probiotics, in addition to having beneficial effects on the host's health, have a very good ability to eliminate and neutralize pathogens and their toxins in foods which leads to enhanced food safety. The present review purposes to comprehensively discuss the role of probiotics in improving food safety by inactivating pathogens (bacterial, fungal, viral, and parasite agents) and neutralizing their toxins in food products. Some recent examples in terms of the anti-microbial activities of probiotics in the body after consuming contaminated food have also been mentioned. This review shows that different probiotics have the potential to inactivate pathogens and neutralize and detoxify various biological agents in foods, as well as in the host body after consumption.

5.
Food Funct ; 12(11): 4738-4748, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34100507

ABSTRACT

Mucilage is a soluble dietary fiber used as a food additive to give foods a firmer texture, aside from its many health benefits and pharmacological properties. It is a polysaccharide in nature, composed of large molecules of sugars and uronic acid moieties. The extraction of mucilage is achieved from a wide variety of plant parts, including rhizomes, roots, and seeds, and it has also been reported from microorganisms. In this review, the nutritional and medicinal applications of mucilage are described in the context of the different mucilage types. The current article highlights state-of-the-art valorization practices relating to mucilage and its potential novel usages in the food industry and nutraceuticals, and as a prebiotic, in addition to its nutritional and anti-nutritional values. Analysis of the prebiotic action of mucilage with respect to its structure activity relationship, as well as how it modulates gut bacteria, is presented for the first time and in the context of its known health benefits inside the colon. It is recommended that more investigations are carried out to maximize the health benefits of mucilage and ensure its safety, especially upon long-term usage.


Subject(s)
Colloids , Dietary Supplements , Functional Food , Plant Mucilage/chemistry , Prebiotics , Nutritive Value
SELECTION OF CITATIONS
SEARCH DETAIL