Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 13(8)2023 08 14.
Article in English | MEDLINE | ID: mdl-37627310

ABSTRACT

Glycosylation of IgG regulates the effector function of this antibody in the immune response. Glycosylated IgG is a potent therapeutic used for both research and clinical purposes. While there is ample research on how different cell culture conditions affect IgG glycosylation, the data are missing on the stability of IgG glycome during long cell passaging, i.e., cell "aging". To test this, we performed three independent time course experiments in FreeStyle 293-F cells, which secrete IgG with a human-like glycosylation pattern and are frequently used to generate defined IgG glycoforms. During long-term cell culturing, IgG glycome stayed fairly stable except for galactosylation, which appeared extremely variable. Cell transcriptome analysis revealed no correlation in galactosyltransferase B4GALT1 expression with galactosylation change, but with expression of EEF1A1 and SLC38A10, genes previously associated with IgG galactosylation through GWAS. The FreeStyle 293-F cell-based system for IgG production is a good model for studies of mechanisms underlying IgG glycosylation, but results from the present study point to the utmost importance of the need to control IgG galactosylation in both in vitro and in vivo systems. This is especially important for improving the production of precisely glycosylated IgG for therapeutic purposes, since IgG galactosylation affects the inflammatory potential of IgG.


Subject(s)
Cell Culture Techniques , Immunoglobulin G , Humans , Immunoglobulin G/genetics , Glycosylation , Cellular Senescence , Gene Expression Profiling
2.
Nucleic Acids Res ; 47(18): 9637-9657, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31410472

ABSTRACT

Establishing causal relationship between epigenetic marks and gene transcription requires molecular tools, which can precisely modify specific genomic regions. Here, we present a modular and extensible CRISPR/dCas9-based toolbox for epigenetic editing and direct gene regulation. It features a system for expression of orthogonal dCas9 proteins fused to various effector domains and includes a multi-gRNA system for simultaneous targeting dCas9 orthologs to up to six loci. The C- and N-terminal dCas9 fusions with DNMT3A and TET1 catalytic domains were thoroughly characterized. We demonstrated simultaneous use of the DNMT3A-dSpCas9 and TET1-dSaCas9 fusions within the same cells and showed that imposed cytosine hyper- and hypo-methylation altered level of gene transcription if targeted CpG sites were functionally relevant. Dual epigenetic manipulation of the HNF1A and MGAT3 genes, involved in protein N-glycosylation, resulted in change of the glycan phenotype in BG1 cells. Furthermore, simultaneous targeting of the TET1-dSaCas9 and VPR-dSpCas9 fusions to the HNF1A regulatory region revealed strong and persistent synergistic effect on gene transcription, up to 30 days following cell transfection, suggesting involvement of epigenetic mechanisms in maintenance of the reactivated state. Also, modulation of dCas9 expression effectively reduced off-target effects while maintaining the desired effects on target regions.


Subject(s)
CRISPR-Cas Systems/genetics , Epigenesis, Genetic , Gene Editing/methods , Transcription, Genetic , Acyltransferases/genetics , Catalytic Domain/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/genetics , DNA Methyltransferase 3A , Gene Expression Regulation/genetics , Genome/genetics , Glycosylation , Hepatocyte Nuclear Factor 1-alpha/genetics , Humans , Mixed Function Oxygenases/genetics , Promoter Regions, Genetic , Proto-Oncogene Proteins/genetics , RNA, Guide, Kinetoplastida/genetics
3.
J Biotechnol ; 301: 18-23, 2019 Aug 10.
Article in English | MEDLINE | ID: mdl-31158410

ABSTRACT

Many recent epigenetic studies utilize the advantages of CRISPR/dCas9 based tools in linking certain epigenetic modification with gene expression regulation. Various multifactorial diseases often contain changed epigenetic signatures at many loci, so tools for simultaneously targeting different loci would significantly facilitate the understanding of disease pathogenesis. We tested different dCas9 orthologs (dCjCas9, dNmCas9, dSt1Cas9, dFnCas9, dSaCas9 and dSpCas9) in C-terminal fusion with DNMT3A effector domain to find candidates that potentiate effector domain to perform its function at the target site. We demonstrated that nuclear localization signals (NLS) at both termini of fusion constructs is crucial for both proper nuclear import of such large constructs as well as for maximization of targeted DNA methylation activity. We identified SpCas9, SaCas9 and CjCas9 as potential candidates for the fusion constructs. With further optimization of the SaCas9 ortholog, due to less complex PAM requirements in contrast to CjCas9, we showed that N-terminal fusion with DNMT3A (dSaCas9-DNMT3A) is optimal to exert targeted DNA methylation activity comparable to the dSpCas9-DNMT3A construct. N-terminal fusions showed better results for both Cas9 orthologs, SaCas9 and SpCas9, so it can be used as universal approach for linking different effector domains in order to obtain highly active fusions.


Subject(s)
CRISPR-Cas Systems/genetics , DNA, Recombinant/genetics , Gene Editing/methods , Gene Fusion/genetics , Epigenomics/methods , Gene Expression Regulation
4.
Methods ; 164-165: 109-119, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31071448

ABSTRACT

Molecular tools for gene regulation and epigenome editing consist of two main parts: the targeting moiety binding a specific genomic locus and the effector domain performing the editing or regulatory function. The advent of CRISPR-Cas9 technology enabled easy and flexible targeting of almost any locus by co-expression of a small sgRNA molecule, which is complementary to the target sequence and forms a complex with Cas9, directing it to that particular target. Here, we review strategies for recruitment of effector domains, used in gene regulation and epigenome editing, to the dCas9 DNA-targeting protein. To date, the most important CRISPR-Cas9 applications in gene regulation are CRISPR activation or interference, while epigenome editing focuses on targeted changes in DNA methylation and histone modifications. Several strategies for signal amplification by recruitment of multiple effector domains deserve special focus. While some approaches rely on altering the sgRNA molecule and extending it with aptamers for effector domain recruitment, others use modifications to the Cas9 protein by direct fusions with effector domains or by addition of an epitope tag, which also has the ability to bind multiple effector domains. A major barrier to the widespread use of CRISPR-Cas9 technology for therapeutic purposes is its off-target effect. We review efforts to enhance CRISPR-Cas9 specificity by selection of Cas9 orthologs from various bacterial species and their further refinement by introduction of beneficial mutations. The molecular tools available today enable a researcher to choose the best balance of targeting flexibility, activity amplification, delivery method and specificity.


Subject(s)
CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems/genetics , Epigenomics/methods , Gene Editing/methods , Animals , Bacteria/genetics , Cell Line , DNA Methylation , Gene Expression Regulation , Gene Silencing , Humans , Optogenetics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...