Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
J Cell Sci ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39355864

ABSTRACT

PROMININ-1 (PROM1) mutations are associated with inherited, non-syndromic vision loss. We used CRISPR/Cas9 to induce prom1-null mutations in Xenopus laevis and then tracked retinal disease progression from the ages of 6 weeks to 3 years old. Prom1-null associated retinal degeneration in frogs is age-dependent and involves RPE dysfunction preceding photoreceptor degeneration. Before photoreceptor degeneration occurs, aging prom1-null frogs develop increasing size and numbers of cellular debris deposits in the subretinal space and outer segment layer, which resemble subretinal drusenoid deposits (SDD) in their location, histology, and representation in color fundus photography and optical coherence tomography (OCT). Evidence for an RPE origin of these deposits includes infiltration of pigment granules into the deposits, thinning of RPE as measured by OCT, and RPE disorganization as measured by histology and OCT. The appearance and accumulation of SDD-like deposits and RPE thinning and disorganization in our animal model suggests an underlying disease mechanism for prom1-null mediated blindness of death and dysfunction of the RPE preceding photoreceptor degeneration, instead of direct effects upon photoreceptor outer segment morphogenesis, as was previously hypothesized.

2.
J Clin Med ; 13(18)2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39336902

ABSTRACT

Background: Optical coherence tomography (OCT) is a leading ocular imaging modality, known for delivering high-resolution volumetric morphological images. However, conventional OCT systems are limited by their narrow field-of-view (FOV) and their reliance on scattering contrast, lacking molecular specificity. Methods: To address these limitations, we developed a custom-built 105∘ ultra-widefield polarization-diversity OCT (UWF PD-OCT) system for assessing various retinal and choroidal conditions, which is particularly advantageous for visualizing peripheral retinal abnormalities. Patients with peripheral lesions or pigmentary changes were imaged using the UWF PD-OCT to evaluate the system's diagnostic capabilities. Comparisons were made with conventional swept-source OCT and other standard clinical imaging modalities to highlight the benefits of depolarization contrast for identifying pathological changes. Results: The molecular-specific contrast offered by UWF PD-OCT enhanced the detection of disease-specific features, particularly in the peripheral retina, by capturing melanin distribution and pigmentary changes in a single shot. This detailed visualization allows clinicians to monitor disease progression with greater precision, offering more accurate insights into retinal and choroidal pathologies. Conclusions: Integrating UWF PD-OCT into clinical practice represents a major advancement in ocular imaging, enabling comprehensive views of retinal pathologies that are difficult to capture with current modalities. This technology holds great potential to transform the diagnosis and management of retinal and choroidal diseases by providing unique insights into peripheral retinal abnormalities and melanin-specific changes, critical for early detection and timely intervention.

3.
Opt Lett ; 49(15): 4314-4317, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090922

ABSTRACT

The results of depth-resolved multi-contrast in vivo mouse choroidal imaging using a polarization-diversity optical coherence tomography (PD-OCT) system are presented. A selectively chosen depth of focus that was fine-tuned with a sensorless adaptive optics technique and a simple segmentation based on the degree of polarization uniformity signal visualizes the detailed features of a mouse choroid from the OCT angiography images. A comprehensive image analysis of the choroid revealed the distinctive pathological characteristics of the laser-induced choroidal neovascularization mouse.


Subject(s)
Choroid , Choroidal Neovascularization , Tomography, Optical Coherence , Animals , Tomography, Optical Coherence/methods , Choroid/diagnostic imaging , Mice , Choroidal Neovascularization/diagnostic imaging
4.
bioRxiv ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38895468

ABSTRACT

Mutations in the PROMININ-1 (PROM1) gene are associated with inherited, non-syndromic vision loss. Here, we used CRISPR/Cas9 to induce truncating prom1-null mutations in Xenopus laevis to create a disease model. We then tracked progression of retinal degeneration in these animals from the ages of 6 weeks to 3 years old. We found that retinal degeneration caused by prom1-null is age-dependent and likely involves death or damage to the retinal pigment epithelium (RPE) that precedes photoreceptor degeneration. As prom1-null frogs age, they develop large cellular debris deposits in the subretinal space and outer segment layer which resemble subretinal drusenoid deposits (SDD) in their location, histology, and representation in color fundus photography and optical coherence tomography (OCT). In older frogs, these SDD-like deposits accumulate in size and number, and they are present before retinal degeneration occurs. Evidence for an RPE origin of these deposits includes infiltration of pigment granules into the deposits, thinning of RPE as measured by OCT, and RPE disorganization as measured by histology and OCT. The appearance and accumulation of SDD-like deposits and RPE thinning and disorganization in our animal model suggests an underlying disease mechanism for prom1-null mediated blindness of death and dysfunction of the RPE preceding photoreceptor degeneration, instead of direct effects upon photoreceptor outer segment morphogenesis, as was previously hypothesized.

5.
J Biomed Opt ; 29(6): 066002, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38745984

ABSTRACT

Significance: Optical coherence tomography (OCT) has emerged as the standard of care for diagnosing and monitoring the treatment of various ocular disorders due to its noninvasive nature and in vivo volumetric acquisition capability. Despite its widespread applications in ophthalmology, motion artifacts remain a challenge in OCT imaging, adversely impacting image quality. While several multivolume registration algorithms have been developed to address this issue, they are often designed to cater to one specific OCT system or acquisition protocol. Aim: We aim to generate an OCT volume free of motion artifacts using a system-agnostic registration algorithm that is independent of system specifications or protocol. Approach: We developed a B-scan registration algorithm that removes motion and corrects for both translational eye movements and rotational angle differences between volumes. Tests were carried out on various datasets obtained from two different types of custom-built OCT systems and one commercially available system to determine the reliability of the proposed algorithm. Additionally, different system specifications were used, with variations in axial resolution, lateral resolution, signal-to-noise ratio, and real-time motion tracking. The accuracy of this method has further been evaluated through mean squared error (MSE) and multiscale structural similarity index measure (MS-SSIM). Results: The results demonstrate improvements in the overall contrast of the images, facilitating detailed visualization of retinal vasculatures in both superficial and deep vasculature plexus. Finer features of the inner and outer retina, such as photoreceptors and other pathology-specific features, are discernible after multivolume registration and averaging. Quantitative analyses affirm that increasing the number of averaged registered volumes will decrease MSE and increase MS-SSIM as compared to the reference volume. Conclusions: The multivolume registered data obtained from this algorithm offers significantly improved visualization of the retinal microvascular network as well as retinal morphological features. Furthermore, we have validated that the versatility of our methodology extends beyond specific OCT modalities, thereby enhancing the clinical utility of OCT for the diagnosis and monitoring of ocular pathologies.


Subject(s)
Algorithms , Imaging, Three-Dimensional , Retina , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Retina/diagnostic imaging , Humans , Imaging, Three-Dimensional/methods , Artifacts , Reproducibility of Results , Signal-To-Noise Ratio
7.
Angiogenesis ; 27(3): 351-373, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38498232

ABSTRACT

Age-related macular degeneration (AMD) is a common retinal neurodegenerative disease among the elderly. Neovascular AMD (nAMD), a leading cause of AMD-related blindness, involves choroidal neovascularization (CNV), which can be suppressed by anti-angiogenic treatments. However, current CNV treatments do not work in all nAMD patients. Here we investigate a novel target for AMD. Granzyme B (GzmB) is a serine protease that promotes aging, chronic inflammation and vascular permeability through the degradation of the extracellular matrix (ECM) and tight junctions. Extracellular GzmB is increased in retina pigment epithelium (RPE) and mast cells in the choroid of the healthy aging outer retina. It is further increased in donor eyes exhibiting features of nAMD and CNV. Here, we show in RPE-choroidal explant cultures that exogenous GzmB degrades the RPE-choroid ECM, promotes retinal/choroidal inflammation and angiogenesis while diminishing anti-angiogenic factor, thrombospondin-1 (TSP-1). The pharmacological inhibition of either GzmB or mast-cell degranulation significantly reduces choroidal angiogenesis. In line with our in vitro data, GzmB-deficiency reduces the extent of laser-induced CNV lesions and the age-related deterioration of electroretinogram (ERG) responses in mice. These findings suggest that targeting GzmB, a serine protease with no known endogenous inhibitors, may be a potential novel therapeutic approach to suppress CNV in nAMD.


Subject(s)
Choroidal Neovascularization , Extracellular Matrix , Granzymes , Inflammation , Mast Cells , Retinal Pigment Epithelium , Granzymes/metabolism , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Animals , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Humans , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Inflammation/pathology , Inflammation/metabolism , Mice , Mast Cells/metabolism , Mast Cells/pathology , Mast Cells/enzymology , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Mice, Inbred C57BL , Choroid/pathology , Choroid/metabolism , Choroid/blood supply , Macular Degeneration/pathology , Macular Degeneration/metabolism , Mice, Knockout
8.
Acta Neuropathol Commun ; 12(1): 19, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38303097

ABSTRACT

Excitotoxicity from the impairment of glutamate uptake constitutes an important mechanism in neurodegenerative diseases such as Alzheimer's, multiple sclerosis, and Parkinson's disease. Within the eye, excitotoxicity is thought to play a critical role in retinal ganglion cell death in glaucoma, diabetic retinopathy, retinal ischemia, and optic nerve injury, yet how excitotoxic injury impacts different retinal layers is not well understood. Here, we investigated the longitudinal effects of N-methyl-D-aspartate (NMDA)-induced excitotoxic retinal injury in a rat model using deep learning-assisted retinal layer thickness estimation. Before and after unilateral intravitreal NMDA injection in nine adult Long Evans rats, spectral-domain optical coherence tomography (OCT) was used to acquire volumetric retinal images in both eyes over 4 weeks. Ten retinal layers were automatically segmented from the OCT data using our deep learning-based algorithm. Retinal degeneration was evaluated using layer-specific retinal thickness changes at each time point (before, and at 3, 7, and 28 days after NMDA injection). Within the inner retina, our OCT results showed that retinal thinning occurred first in the inner plexiform layer at 3 days after NMDA injection, followed by the inner nuclear layer at 7 days post-injury. In contrast, the retinal nerve fiber layer exhibited an initial thickening 3 days after NMDA injection, followed by normalization and thinning up to 4 weeks post-injury. Our results demonstrated the pathological cascades of NMDA-induced neurotoxicity across different layers of the retina. The early inner plexiform layer thinning suggests early dendritic shrinkage, whereas the initial retinal nerve fiber layer thickening before subsequent normalization and thinning indicates early inflammation before axonal loss and cell death. These findings implicate the inner plexiform layer as an early imaging biomarker of excitotoxic retinal degeneration, whereas caution is warranted when interpreting the ganglion cell complex combining retinal nerve fiber layer, ganglion cell layer, and inner plexiform layer thicknesses in conventional OCT measures. Deep learning-assisted retinal layer segmentation and longitudinal OCT monitoring can help evaluate the different phases of retinal layer damage upon excitotoxicity.


Subject(s)
Deep Learning , Retinal Degeneration , Rats , Animals , Retinal Degeneration/chemically induced , Retinal Degeneration/diagnostic imaging , Retinal Degeneration/pathology , Tomography, Optical Coherence/methods , N-Methylaspartate/toxicity , Rats, Long-Evans , Retina/pathology , Retinal Ganglion Cells/pathology , Nerve Fibers/pathology
10.
Invest Ophthalmol Vis Sci ; 64(14): 6, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37930688

ABSTRACT

Purpose: The purpose of this study was to demonstrate the utility of polarization-diversity optical coherence tomography (PD-OCT), a noninvasive imaging technique with melanin-specific contrast, in the quantitative and qualitative assessment of choroidal nevi. Methods: Nevi were imaged with a custom-built 55-degree field-of-view (FOV) 400 kHz PD-OCT system. Imaging features on PD-OCT were compared to those on fundus photography, auto-fluorescence, ultrasound, and non-PD-OCT images. Lesions were manually segmented for size measurement and metrics for objective assessment of melanin distributions were calculated, including degree of polarization uniformity (DOPU), attenuation coefficient, and melanin occupancy rate (MOR). Results: We imaged 17 patients (mean age = 69.5 years, range = 37-90) with 11 pigmented, 3 non-pigmented, and 3 mixed pigmentation nevi. Nevi with full margin acquisition had an average longest basal diameter of 5.1 mm (range = 2.99-8.72 mm) and average height of 0.72 mm (range = 0.37 mm-2.09 mm). PD-OCT provided clear contrast of choroidal melanin content, distribution, and delineation of nevus margins for melanotic nevi. Pigmented nevi were found to have lower DOPU, higher attenuation coefficient, and higher MOR than non-pigmented lesions. Melanin content on PD-OCT was consistent with pigmentation on fundus in 15 of 17 nevi (88%). Conclusions: PD-OCT allows objective assessment of choroidal nevi melanin content and distribution. In addition, melanin-specific contrast by PD-OCT enables clear nevus margin delineation and may improve serial growth surveillance. Further investigation is needed to determine the clinical significance and prognostic value of melanin characterization by PD-OCT in the evaluation of choroidal nevi.


Subject(s)
Choroid Neoplasms , Nevus, Pigmented , Nevus , Skin Neoplasms , Humans , Adult , Middle Aged , Aged , Aged, 80 and over , Tomography, Optical Coherence , Melanins , Nevus, Pigmented/diagnostic imaging , Nevus/diagnostic imaging , Choroid Neoplasms/diagnostic imaging
11.
Comput Biol Med ; 159: 106595, 2023 06.
Article in English | MEDLINE | ID: mdl-37087780

ABSTRACT

BACKGROUND: Medical images such as Optical Coherence Tomography (OCT) images acquired from different devices may show significantly different intensity profiles. An automatic segmentation model trained on images from one device may perform poorly when applied to images acquired using another device, resulting in a lack of generalizability. This study addresses this issue using domain adaptation methods improved by Cycle-Consistent Generative Adversarial Networks (CycleGAN), especially when the ground-truth labels are only available in the source domain. METHODS: A two-stage pipeline is proposed to generate segmentation in the target domain. The first stage involves the training of a state-of-the-art segmentation model in the source domain. The second stage aims to adapt the images from the target domain to the source domain. The adapted target domain images are segmented using the model in the first stage. Ablation tests were performed with integration of different loss functions, and the statistical significance of these models is reported. Both the segmentation performance and the adapted image quality metrics were evaluated. RESULTS: Regarding the segmentation Dice score, the proposed model ssppg achieves a significant improvement of 46.24% compared to without adaptation and reaches 87.4% of the upper limit of the segmentation performance. Furthermore, image quality metrics, including FID and KID scores, indicate that adapted images with better segmentation also have better image qualities. CONCLUSION: The proposed method demonstrates the effectiveness of segmentation-driven domain adaptation in retinal imaging processing. It reduces the labor cost of manual labeling, incorporates prior anatomic information to regulate and guide domain adaptation, and provides insights into improving segmentation qualities in image domains without labels.


Subject(s)
Retina , Tomography, Optical Coherence , Retina/diagnostic imaging , Image Processing, Computer-Assisted/methods
12.
Opt Lett ; 47(19): 5096-5099, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36181195

ABSTRACT

A fast and practical computational cross-calibration of multiple spectrometers is described. A signal correlation matrix (CM) can be constructed from paired B-scans in a multiple-spectrometer optical coherence tomography (OCT), where the wavelength-corresponding pixels are indicated by high cross correlation. The CM can be used to either guide the physical alignment of spectrometers or to numerically match the spectra in the post-process. The performance is comparable to the previously reported optimization approach, as demonstrated by the mirror tests, qualitative comparison of OCT and optical coherence tomography angiography (OCTA) images, and quantitative comparison of image metrics.


Subject(s)
Angiography , Tomography, Optical Coherence , Calibration , Fluorescein Angiography/methods , Refractometry , Tomography, Optical Coherence/methods
13.
Biomed Opt Express ; 13(9): 5004-5014, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36187260

ABSTRACT

Corneal imaging is important for the diagnostic and therapeutic evaluation of many eye diseases. Optical coherence tomography (OCT) is extensively used in ocular imaging due to its non-invasive and high-resolution volumetric imaging characteristics. Optical coherence microscopy (OCM) is a technical variation of OCT that can image the cornea with cellular resolution. Here, we demonstrate a blue-light OCM as a low-cost and easily reproducible system to visualize corneal cellular structures such as epithelial cells, endothelial cells, keratocytes, and collagen bundles within stromal lamellae. Our blue-light OCM system achieved an axial resolution of 12 µm in tissue over a 1.2 mm imaging depth, and a lateral resolution of 1.6 µm over a field of view of 750 µm × 750 µm.

14.
Biomed Opt Express ; 13(3): 1685-1701, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35414988

ABSTRACT

The present paper introduces a numerical calibration method for the easy and practical implementation of multiple spectrometer-based spectral-domain optical coherence tomography (SD-OCT) systems. To address the limitations of the traditional hardware-based spectrometer alignment across more than one spectrometer, we applied a numerical spectral calibration algorithm where the pixels corresponding to the same wavelength in each unit are identified through spatial- and frequency-domain interferometric signatures of a mirror sample. The utility of dual spectrometer-based SD-OCT imaging is demonstrated through in vivo retinal imaging at two different operation modes with high-speed and dual balanced acquisitions, respectively, in which the spectral alignment is critical to achieve improved retinal image data without any artifacts caused by misalignment of the spectrometers.

15.
Comput Biol Med ; 143: 105319, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35220077

ABSTRACT

BACKGROUND: This study aims to achieve an automatic differential diagnosis between two types of retinal pathologies with similar pathological features - Polypoidal choroidal vasculopathy (PCV) and wet age-related macular degeneration (AMD) from volumetric optical coherence tomography (OCT) images, and identify clinically-relevant pathological features, using an explainable deep-learning-based framework. METHODS: This is a retrospective study with data from a cross-sectional cohort. The OCT volume of 73 eyes from 59 patients was included in this study. Disease differentiation was achieved through single-B-scan-based classification followed by a volumetric probability prediction aggregation step. We compared different labeling strategies with and without identifying pathological B-scans within each OCT volume. Clinical interpretability was achieved through normalized aggregation of B-scan-based saliency maps followed by maximum-intensity-projection onto the en face plane. We derived the PCV score from the proposed differential diagnosis framework with different labeling strategies. The en face projection of saliency map was validated with the pathologies identified in Indocyanine green angiography (ICGA). RESULTS: Model trained with both labeling strategies achieved similar level differentiation power (>90%), with good correspondence between pathological features detected from the projected en face saliency map and ICGA. CONCLUSIONS: This study demonstrated the potential clinical application of non-invasive differential diagnosis using AI-driven OCT-based analysis, with minimal requirement of labeling efforts, along with clinical explainability achieved through automatically detected disease-related pathologies.

16.
Retin Cases Brief Rep ; 16(4): 435-438, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-32271274

ABSTRACT

PURPOSE: To report a case of acute zonal occult outer retinopathy in which adaptive optics (AO) facilitated visualization of abnormal photoreceptors previously thought to be in an area of normal retina on conventional optical coherence tomography (OCT). METHODS: Case report. RESULTS: A 51-year-old woman presents with 11-month history of photopsias and scotoma in the temporal visual field of her left eye. Ocular imaging including fluorescein angiography, fundus autofluorescence and OCT suggested the diagnosis of acute zonal occult outer retinopathy in the left eye. Adaptive optics optical coherence tomography (AO-OCT) revealed photoreceptor abnormalities not previously identified in conventional OCT, in areas apparently normal on multimodal imaging. On enface and cross-sectional AO-OCT, round and evenly spaced hyperreflectivity corresponding to normal cone mosaic (Pattern 1) was adjacent to unevenly and disrupted cone hyperreflectivity (Pattern 2) and areas with hyporeflectivity or no cone reflectivity (Pattern 3). Cross-sectional AO-OCT of Patterns 2 and 3 also revealed attenuation of ellipsoid zone with loss of interdigitation zone. CONCLUSION: Adaptive optics OCT documented cone photoreceptors in finer details than conventional OCT and revealed early changes in a patient with acute zonal occult outer retinopathy, in an area of the retina thought to be normal on conventional multimodal imaging. These findings may provide important insight into pathogenesis and progression of the disease.


Subject(s)
Scotoma , Tomography, Optical Coherence , Cross-Sectional Studies , Female , Fluorescein Angiography/methods , Humans , Middle Aged , Scotoma/diagnosis , Tomography, Optical Coherence/methods , Visual Acuity , White Dot Syndromes
17.
Biomed Opt Express ; 12(10): 6660-6673, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34745763

ABSTRACT

Optical coherence tomography (OCT) and OCT angiography (OCT-A) may benefit the screening of diabetic retinopathy (DR). This study investigated the effect of laterally subsampling OCT/OCT-A en face scans by up to a factor of 8 when using deep neural networks for automated referable DR classification. There was no significant difference in the classification performance across all evaluation metrics when subsampling up to a factor of 3, and only minimal differences up to a factor of 8. Our findings suggest that OCT/OCT-A can reduce the number of samples (and hence the acquisition time) for a volume for a given field of view on the retina that is acquired for rDR classification.

18.
Opt Lett ; 46(16): 3833-3836, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34388753

ABSTRACT

Megahertz-rate optical coherence tomography angiography (OCTA) is highly anticipated as an ultrafast imaging tool in clinical settings. However, shot-noise-limited sensitivity is inevitably reduced in high-speed imaging systems. In this Letter, we present a coherent buffer averaging technique for use with a Fourier-domain mode-locked (FDML) laser to improve OCTA contrast at 1060 nm MHz-rate retinal imaging. Full characterization of spectral variations among the FDML buffers and a numerical correction method are also presented, with the results demonstrating a 10-fold increase in the phase alignment among buffers. Coherent buffer averaging provided better OCTA contrast than the conventional multi-frame averaging approach with a faster acquisition time.


Subject(s)
Lasers , Tomography, Optical Coherence , Angiography , Retina
19.
J Glaucoma ; 30(8): 682-689, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33927150

ABSTRACT

PRECIS: The peripapillary choriocapillaris (CC) was observed to be significantly impaired in normal tension glaucoma (NTG) subjects compared with normal controls using optical coherence tomography angiography (OCTA). PURPOSE: The aim was to quantitatively evaluate the peripapillary CC in NTG, primary open-angle glaucoma (POAG), and control eyes using OCTA. MATERIALS AND METHODS: Ninety eyes (30 controls, 30 NTG, and 30 POAG) from 73 patients were imaged using the Zeiss Plex Elite 9000. Five repeat 3×3 mm OCTA scans were acquired both nasally and temporally to the optic disc and subsequently averaged. Four CC flow deficit (FD) measures were calculated using the fuzzy C-means approach: FD density (FDD), mean FD size (MFDS), FD number (FDN), and FD area (FDA). RESULTS: Temporal NTG CC parameters were associated with visual field index and mean deviation (P<0.05). The control group showed a significantly lower nasal FDD (nasal: 3.79±1.26%, temporal: 4.48±1.73%, P=0.03), FDN (nasal: 156.43±38.44, temporal: 178.40±45.68, P=0.02), and FDA (nasal: 0.22±0.08, temporal: 0.26±0.10, P=0.03) when compared with temporal optic disc. The NTG group showed a significantly higher FDD (NTG: 5.04±2.38%, control: 3.79±1.26%, P=0.03), FDN (NTG: 185.90±56.66, control: 156.43±38.44, P=0.04), and FDA (NTG: 0.30±0.14 mm2, control: 0.22±0.08 mm2, P=0.03) nasal to the optic disc compared with controls. CONCLUSIONS: Association between CC parameters and glaucoma severity in NTG, but not POAG subjects, suggests vascular abnormalities may be a potential factor in the multifactorial process of glaucoma damage in NTG patients.


Subject(s)
Glaucoma, Open-Angle , Low Tension Glaucoma , Choroid/diagnostic imaging , Glaucoma, Open-Angle/diagnosis , Humans , Intraocular Pressure , Low Tension Glaucoma/diagnostic imaging , Tomography, Optical Coherence , Visual Fields
20.
Biomed Opt Express ; 12(1): 553-570, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33659089

ABSTRACT

High resolution visualization of optical coherence tomography (OCT) and OCT angiography (OCT-A) data is required to fully take advantage of the imaging modality's three-dimensional nature. However, artifacts induced by patient motion often degrade OCT-A data quality. This is especially true for patients with deteriorated focal vision, such as those with diabetic retinopathy (DR). We propose a novel methodology for software-based OCT-A motion correction achieved through serial acquisition, volumetric registration, and averaging. Motion artifacts are removed via a multi-step 3D registration process, and visibility is significantly enhanced through volumetric averaging. We demonstrate that this method permits clear 3D visualization of retinal pathologies and their surrounding features, 3D visualization of inner retinal capillary connections, as well as reliable visualization of the choriocapillaris layer.

SELECTION OF CITATIONS
SEARCH DETAIL