Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
bioRxiv ; 2023 Dec 12.
Article En | MEDLINE | ID: mdl-38045271

High-throughput volumetric fluorescent microscopy pipelines can spatially integrate whole-brain structure and function at the foundational level of single-cells. However, conventional fluorescent protein (FP) modifications used to discriminate single-cells possess limited efficacy or are detrimental to cellular health. Here, we introduce a synthetic and non-deleterious nuclear localization signal (NLS) tag strategy, called 'Arginine-rich NLS' (ArgiNLS), that optimizes genetic labeling and downstream image segmentation of single-cells by restricting FP localization near-exclusively in the nucleus through a poly-arginine mechanism. A single N-terminal ArgiNLS tag provides modular nuclear restriction consistently across spectrally separate FP variants. ArgiNLS performance in vivo displays functional conservation across major cortical cell classes, and in response to both local and systemic brain wide AAV administration. Crucially, the high signal-to-noise ratio afforded by ArgiNLS enhances ML-automated segmentation of single-cells due to rapid classifier training and enrichment of labeled cell detection within 2D brain sections or 3D volumetric whole-brain image datasets, derived from both staining-amplified and native signal. This genetic strategy provides a simple and flexible basis for precise image segmentation of genetically labeled single-cells at scale and paired with behavioral procedures.

2.
J Neurosci ; 43(45): 7587-7598, 2023 11 08.
Article En | MEDLINE | ID: mdl-37940594

The human brain represents one of the most complex biological systems, containing billions of neurons interconnected through trillions of synapses. Inherent to the brain is a biochemical complexity involving ions, signaling molecules, and peptides that regulate neuronal activity and allow for short- and long-term adaptations. Large-scale and noninvasive imaging techniques, such as fMRI and EEG, have highlighted brain regions involved in specific functions and visualized connections between different brain areas. A major shortcoming, however, is the need for more information on specific cell types and neurotransmitters involved, as well as poor spatial and temporal resolution. Recent technologies have been advanced for neuronal circuit mapping and implemented in behaving model organisms to address this. Here, we highlight strategies for targeting specific neuronal subtypes, identifying, and releasing signaling molecules, controlling gene expression, and monitoring neuronal circuits in real-time in vivo Combined, these approaches allow us to establish direct causal links from genes and molecules to the systems level and ultimately to cognitive processes.


Brain , Neurons , Humans , Brain/physiology , Neurons/physiology , Brain Mapping/methods , Synapses/physiology , Magnetic Resonance Imaging
3.
Sci Adv ; 9(32): eadg8869, 2023 08 11.
Article En | MEDLINE | ID: mdl-37566654

Dopamine is broadly implicated in reinforcement learning, but how patterns of dopamine activity are generated is poorly resolved. Here, we demonstrate that two ion channels, Kv4.3 and BKCa1.1, regulate the pattern of dopamine neuron firing and dopamine release on different time scales to influence separate phases of reinforced behavior in mice. Inactivation of Kv4.3 in VTA dopamine neurons increases ex vivo pacemaker activity and excitability that is associated with increased in vivo firing rate and ramping dynamics before lever press in a learned instrumental paradigm. Loss of Kv4.3 enhances performance of the learned response and facilitates extinction. In contrast, loss of BKCa1.1 increases burst firing and phasic dopamine release that enhances learning of an instrumental response and enhances extinction burst lever pressing in early extinction that is associated with a greater change in activity between reinforced and unreinforced actions. These data demonstrate that disruption of intrinsic regulators of neuronal activity differentially affects dopamine dynamics during reinforcement and extinction learning.


Dopamine , Dopaminergic Neurons , Mice , Animals , Reinforcement, Psychology , Learning , Ion Channels
4.
Elife ; 122023 03 17.
Article En | MEDLINE | ID: mdl-36927614

The axonal guidance cue netrin-1 serves a critical role in neural circuit development by promoting growth cone motility, axonal branching, and synaptogenesis. Within the adult mouse brain, expression of the gene encoding (Ntn1) is highly enriched in the ventral midbrain where it is expressed in both GABAergic and dopaminergic neurons, but its function in these cell types in the adult system remains largely unknown. To address this, we performed viral-mediated, cell-type specific CRISPR-Cas9 mutagenesis of Ntn1 in the ventral tegmental area (VTA) of adult mice. Ntn1 loss-of-function in either cell type resulted in a significant reduction in excitatory postsynaptic connectivity. In dopamine neurons, the reduced excitatory tone had a minimal phenotypic behavioral outcome; however, reduced glutamatergic tone on VTA GABA neurons induced behaviors associated with a hyperdopaminergic phenotype. Simultaneous loss of Ntn1 function in both cell types largely rescued the phenotype observed in the GABA-only mutagenesis. These findings demonstrate an important role for Ntn1 in maintaining excitatory connectivity in the adult midbrain and that a balance in this connectivity within two of the major cell types of the VTA is critical for the proper functioning of the mesolimbic system.


Glutamic Acid , Ventral Tegmental Area , Mice , Animals , Glutamic Acid/metabolism , Ventral Tegmental Area/physiology , Netrin-1/metabolism , Signal Transduction , Dopaminergic Neurons/physiology
5.
Nat Commun ; 13(1): 1532, 2022 03 22.
Article En | MEDLINE | ID: mdl-35318315

Anxiety disorders are complex diseases, and often co-occur with depression. It is as yet unclear if a common neural circuit controls anxiety-related behaviors in both anxiety-alone and comorbid conditions. Here, utilizing the chronic social defeat stress (CSDS) paradigm that induces singular or combined anxiety- and depressive-like phenotypes in mice, we show that a ventral tegmental area (VTA) dopamine circuit projecting to the basolateral amygdala (BLA) selectively controls anxiety- but not depression-like behaviors. Using circuit-dissecting ex vivo electrophysiology and in vivo fiber photometry approaches, we establish that expression of anxiety-like, but not depressive-like, phenotypes are negatively correlated with VTA → BLA dopamine neuron activity. Further, our optogenetic studies demonstrate a causal link between such neuronal activity and anxiety-like behaviors. Overall, these data establish a functional role for VTA → BLA dopamine neurons in bi-directionally controlling anxiety-related behaviors not only in anxiety-alone, but also in anxiety-depressive comorbid conditions in mice.


Basolateral Nuclear Complex , Animals , Anxiety , Anxiety Disorders , Dopaminergic Neurons/metabolism , Mesencephalon , Mice , Stress, Psychological , Ventral Tegmental Area/physiology
6.
Cell Res ; 32(2): 115-116, 2022 02.
Article En | MEDLINE | ID: mdl-34949785
7.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article En | MEDLINE | ID: mdl-34728568

Autism spectrum disorder (ASD) adversely impacts >1% of children in the United States, causing social interaction deficits, repetitive behaviors, and communication disorders. Genetic analysis of ASD has advanced dramatically through genome sequencing, which has identified >500 genes with mutations in ASD. Mutations that alter arginine gating charges in the voltage sensor of the voltage-gated potassium (KV) channel KV7 (KCNQ) are among those frequently associated with ASD. We hypothesized that these gating charge mutations would induce gating pore current (also termed ω-current) by causing an ionic leak through the mutant voltage sensor. Unexpectedly, we found that wild-type KV7 conducts outward gating pore current through its native voltage sensor at positive membrane potentials, owing to a glutamine in the third gating charge position. In bacterial and human KV7 channels, gating charge mutations at the R1 and R2 positions cause inward gating pore current through the resting voltage sensor at negative membrane potentials, whereas mutation at R4 causes outward gating pore current through the activated voltage sensor at positive potentials. Remarkably, expression of the KV7.3/R2C ASD-associated mutation in vivo in midbrain dopamine neurons of mice disrupts action potential generation and repetitive firing. Overall, our results reveal native and mutant gating pore current in KV7 channels and implicate altered control of action potential generation by gating pore current through mutant KV7 channels as a potential pathogenic mechanism in autism.


Autism Spectrum Disorder/genetics , KCNQ Potassium Channels/genetics , Action Potentials , Animals , Cyanobacteria , Female , Humans , In Vitro Techniques , KCNQ Potassium Channels/metabolism , KCNQ3 Potassium Channel/genetics , Male , Mice , Mutation
8.
Curr Biol ; 31(19): 4388-4396.e5, 2021 10 11.
Article En | MEDLINE | ID: mdl-34388372

Discrimination between predictive and non-predictive threat stimuli decreases as threat intensity increases. The central mechanisms that mediate the transition from discriminatory to generalized threat responding remain poorly resolved. Here, we identify the stress- and dysphoria-associated kappa opioid receptor (KOR) and its ligand dynorphin (Dyn), acting in the ventral tegmental area (VTA), as a key substrate for regulating threat generalization. We identify several dynorphinergic inputs to the VTA and demonstrate that projections from the bed nucleus of the stria terminalis (BNST) and dorsal raphe nucleus (DRN) both contribute to anxiety-like behavior but differentially affect threat generalization. These data demonstrate that conditioned threat discrimination has an inverted "U" relationship with threat intensity and establish a role for KOR/Dyn signaling in the midbrain for promoting threat generalization.


Dynorphins , Septal Nuclei , Dorsal Raphe Nucleus , Receptors, Opioid, kappa/metabolism , Ventral Tegmental Area/metabolism
9.
Biol Psychiatry ; 90(7): 482-493, 2021 10 01.
Article En | MEDLINE | ID: mdl-34247781

BACKGROUND: Major depressive disorder is prevalent in children and adolescents and is associated with a high degree of morbidity throughout life, with potentially devastating personal consequences and public health impact. The efficacy of ketamine (KET) as an antidepressant has been demonstrated in adolescent rodents; however, the neurobiological mechanisms underlying these effects are unknown. Recent evidence showed that KET reverses stress-induced (i.e., depressive-like) deficits within major mesocorticolimbic regions, such as the prefrontal cortex, nucleus accumbens (NAc), and hippocampus, in adult rodents. However, little is known about KET's effect in the ventral tegmental area (VTA), which provides the majority of dopaminergic input to these brain regions. METHODS: We characterized behavioral, biochemical, and electrophysiological effects produced by KET treatment in C57BL/6J male mice during adolescence (n = 7-10 per condition) within the VTA and its major projection regions, namely, the NAc and prefrontal cortex. Subsequently, molecular targets within the VTA-NAc projection were identified for viral gene transfer manipulations to recapitulate the effects of stress or KET treatment. RESULTS: Repeated KET treatment produced a robust proresilient response to chronic social defeat stress. This effect was largely driven by Akt signaling activity within the VTA and NAc, and it could be blocked or recapitulated through direct Akt-viral-mediated manipulation. Additionally, we found that the KET-induced resilient phenotype is dependent on VTA-NAc, but not VTA-prefrontal cortex, pathway activity. CONCLUSIONS: These findings indicate that KET exposure during adolescence produces a proresilient phenotype mediated by changes in Akt intracellular signaling and altered neuronal activity within the VTA-NAc pathway.


Depressive Disorder, Major , Ketamine , Animals , Male , Mice , Mice, Inbred C57BL , Nucleus Accumbens , Phenotype , Ventral Tegmental Area
10.
Mol Metab ; 49: 101218, 2021 07.
Article En | MEDLINE | ID: mdl-33766732

OBJECTIVE: Arcuate nucleus neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons drive ingestive behavior. The M-current, a subthreshold non-inactivating potassium current, plays a critical role in regulating NPY/AgRP neuronal excitability. Fasting decreases while 17ß-estradiol increases the M-current by regulating the mRNA expression of Kcnq2, 3, and 5 (Kv7.2, 3, and 5) channel subunits. Incorporating KCNQ3 into heteromeric channels has been considered essential to generate a robust M-current. Therefore, we investigated the behavioral and physiological effects of selective Kcnq3 deletion from NPY/AgRP neurons. METHODS: We used a single adeno-associated viral vector containing a recombinase-dependent Staphylococcus aureus Cas9 with a single-guide RNA to selectively delete Kcnq3 in NPY/AgRP neurons. Single-cell quantitative measurements of mRNA expression and whole-cell patch clamp experiments were conducted to validate the selective knockdown. Body weight, food intake, and locomotor activity were measured in male mice to assess disruptions in energy balance. RESULTS: The virus reduced the expression of Kcnq3 mRNA without affecting Kcnq2 or Kcnq5. The M-current was attenuated, causing NPY/AgRP neurons to be more depolarized, exhibit a higher input resistance, and require less depolarizing current to fire action potentials, indicative of increased excitability. Although the resulting decrease in the M-current did not overtly alter ingestive behavior, it significantly reduced the locomotor activity as measured by open-field testing. Control mice on a high-fat diet exhibited an enhanced M-current and increased Kcnq2 and Kcnq3 expression, but the M-current remained significantly attenuated in KCNQ3 knockdown animals. CONCLUSIONS: The M-current plays a critical role in modulating the intrinsic excitability of NPY/AgRP neurons that is essential for maintaining energy homeostasis.


Agouti-Related Protein/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Energy Metabolism/physiology , KCNQ3 Potassium Channel/genetics , KCNQ3 Potassium Channel/metabolism , Neurons/metabolism , Neuropeptide Y/metabolism , Neuropeptides/metabolism , Action Potentials , Animals , Body Weight , CRISPR-Cas Systems , Diet, High-Fat , Estradiol/metabolism , Fasting , Feeding Behavior , Female , Male , Mice , Neuropeptide Y/genetics
11.
Alcohol Clin Exp Res ; 45(5): 1051-1064, 2021 05.
Article En | MEDLINE | ID: mdl-33760264

BACKGROUND: Mild traumatic brain injury (mTBI) is common in civilians and highly prevalent among military service members. mTBI can increase health risk behaviors (e.g., sensation seeking, impulsivity) and addiction risk (e.g., for alcohol use disorder (AUD)), but how mTBI and substance use might interact to promote addiction risk remains poorly understood. Likewise, potential differences in single vs. repetitive mTBI in relation to alcohol use/abuse have not been previously examined. METHODS: Here, we examined how a history of single (1×) or repetitive (3×) blast exposure (blast-mTBI) affects ethanol (EtOH)-induced behavioral and physiological outcomes using an established mouse model of blast-mTBI. To investigate potential translational relevance, we also examined self-report responses to the Alcohol Use Disorders Identification Test-Consumption questions (AUDIT-C), a widely used measure to identify potential hazardous drinking and AUD, and used a novel unsupervised machine learning approach to investigate whether a history of blast-mTBI affected drinking behaviors in Iraq/Afghanistan Veterans. RESULTS: Both single and repetitive blast-mTBI in mice increased the sedative properties of EtOH (with no change in tolerance or metabolism), but only repetitive blast potentiated EtOH-induced locomotor stimulation and shifted EtOH intake patterns. Specifically, mice exposed to repetitive blasts showed increased consumption "front-loading" (e.g., a higher rate of consumption during an initial 2-h acute phase of a 24-h alcohol access period and decreased total daily intake) during an intermittent 2-bottle choice condition. Examination of AUDIT-C scores in Iraq/Afghanistan Veterans revealed an optimal 3-cluster solution: "low" (low intake and low frequency), "frequent" (low intake and high frequency), and "risky" (high intake and high frequency), where Veterans with a history of blast-mTBI displayed a shift in cluster assignment from "frequent" to "risky," as compared to Veterans who were deployed to Iraq/Afghanistan but had no lifetime history of TBI. CONCLUSIONS: Together, these results offer new insight into how blast-mTBI may give increase AUD risk and highlight the increased potential for adverse health risk behaviors following repetitive blast-mTBI.


Alcohol Drinking/physiopathology , Alcoholism/epidemiology , Behavior, Animal/drug effects , Blast Injuries/physiopathology , Brain Concussion/physiopathology , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Locomotion/drug effects , Veterans , War Exposure , Adult , Alcohol Drinking/epidemiology , Animals , Brain Concussion/epidemiology , Cluster Analysis , Humans , Male , Mice , Middle Aged , Recurrence , Risk Factors , Young Adult
12.
eNeuro ; 8(1)2021.
Article En | MEDLINE | ID: mdl-33323398

Neuropeptides within the central nucleus of the amygdala (CeA) potently modulate neuronal excitability and have been shown to regulate conditioned threat discrimination and anxiety. Here, we investigated the role of κ opioid receptor (KOR) and its endogenous ligand dynorphin in the CeA for regulation of conditioned threat discrimination and anxiety-like behavior in mice. We demonstrate that reduced KOR expression through genetic inactivation of the KOR encoding gene, Oprk1, in the CeA results in increased anxiety-like behavior and impaired conditioned threat discrimination. In contrast, reduction of dynorphin through genetic inactivation of the dynorphin encoding gene, Pdyn, in the CeA has no effect on anxiety or conditioned threat discrimination. However, inactivation of Pdyn from multiple sources, intrinsic and extrinsic to the CeA phenocopies Oprk1 inactivation. These findings suggest that dynorphin inputs to the CeA signal through KOR to promote threat discrimination and dampen anxiety.


Central Amygdaloid Nucleus , Dynorphins , Animals , Anxiety , Central Amygdaloid Nucleus/metabolism , Dynorphins/metabolism , Mice , Receptors, Opioid, kappa/genetics , Receptors, Opioid, kappa/metabolism , Signal Transduction
13.
Neuropharmacology ; 175: 108176, 2020 09 15.
Article En | MEDLINE | ID: mdl-32497591

Alcohol use disorder (AUD) places a tremendous burden on society, with approximately two billion alcohol users in the world. While most people drink alcohol recreationally, a subpopulation (3-5%) engages in reckless and compulsive drinking, leading to the development of AUD and alcohol dependence. The Ventral Tegmental Area (VTA)-Nucleus Accumbens (NAc) circuit has been shown to encode rewarding stimuli and drive individual alcohol drinking behavior. Our previous work successfully separated C57BL/6J isogenic mice into high or low alcohol drinking subgroups after a 12-day, two-bottle choice voluntary alcohol access paradigm. Electrophysiological studies revealed that low alcohol drinking mice exhibited elevated spontaneous and burst firing properties of their VTA dopamine (DA) neurons and specifically mimicking this pattern of activity in VTA-NAc neurons in high alcohol drinking mice using optogenetics decreased their alcohol preference. It is also known that VTA DA neurons encode the salience and rewarding properties of external stimuli while also regulating downstream dopamine concentrations. Here, as a follow-up to this study, we utilized Fast Scan Cyclic Voltammetry (FSCV) to examine dopamine release in the NAc shell and core between alcohol drinking groups. We observed dynamic changes of dopamine release in the core of high drinking mice, but failed to see widely significant differences of dopamine release in the shell of both groups, when compared with ethanol-naive controls. Overall, the present data suggest subregion-specific differences of evoked dopamine release in the NAc of low and high alcohol drinking mice, and may provide an anatomical substrate for individual alcohol drinking behavior. This article is part of the special issue on Stress, Addiction and Plasticity.


Alcohol Drinking/metabolism , Dopamine/metabolism , Nucleus Accumbens/metabolism , Animals , Ethanol/administration & dosage , Male , Mice, Inbred C57BL
14.
Alcohol ; 74: 29-38, 2019 02.
Article En | MEDLINE | ID: mdl-30621856

Optogenetic techniques have been widely used in the study of neuropsychiatric diseases such as anxiety, depression, and drug addiction. Cell-type specific targeting of optogenetic tools to neurons has contributed to a tremendous understanding of the function of neural circuits for future treatment of neuropsychiatric disorders. Though optogenetics has been widely used in many research areas, the use of optogenetic tools to uncover and elucidate neural circuit mechanisms of alcohol's actions in the brain are still developing. Here in this review article, we will provide a basic introduction to optogenetics and discuss how these optogenetic experimental approaches can be used in alcohol studies to reveal neural circuit mechanisms of alcohol's actions in regions implicated in the development of alcohol addiction.


Alcoholism/etiology , Brain/physiology , Optogenetics/methods , Amygdala/physiology , Animals , Habenula/physiology , Humans , Nucleus Accumbens/physiology , Ventral Tegmental Area/physiology
15.
Biol Psychiatry ; 85(3): 226-236, 2019 02 01.
Article En | MEDLINE | ID: mdl-30336931

BACKGROUND: Homeostatic plasticity in mesolimbic dopamine (DA) neurons plays an essential role in mediating resilience to social stress. Recent evidence implicates an association between stress resilience and projections from the locus coeruleus (LC) to the ventral tegmental area (VTA) (LC→VTA) DA system. However, the precise circuitry and molecular mechanisms of the homeostatic plasticity in mesolimbic DA neurons mediated by the LC→VTA circuitry, and its role in conferring resilience to social defeat stress, have not been described. METHODS: In a well-established chronic social defeat stress model of depression, using projection-specific electrophysiological recordings and optogenetic, pharmacological, and molecular profiling techniques, we investigated the functional role and molecular basis of an LC→VTA circuit in conferring resilience to social defeat stress. RESULTS: We found that LC neurons projecting to the VTA exhibit enhanced firing activity in resilient, but not susceptible, mice. Optogenetically mimicking this firing adaptation in susceptible mice reverses their depression-related behaviors, and induces reversal of cellular hyperactivity and homeostatic plasticity in VTA DA neurons projecting to the nucleus accumbens. Circuit-specific molecular profiling studies reveal that α1- and ß3-adrenergic receptors are highly expressed in VTA→nucleus accumbens DA neurons. Pharmacologically activating these receptors induces similar proresilient effects at the ion channel and cellular and behavioral levels, whereas antagonizing these receptors blocks the proresilient effect of optogenetic activation of LC→VTA circuit neurons in susceptible mice. CONCLUSIONS: These findings reveal a key role of the LC→VTA circuit in mediating homeostatic plasticity in stress resilience and reveal α1- and ß3-adrenergic receptors as new molecular targets for therapeutically promoting resilience.


Locus Coeruleus/physiology , Receptors, Adrenergic, alpha-1/physiology , Receptors, Adrenergic, beta-3/physiology , Resilience, Psychological , Ventral Tegmental Area/physiology , Adrenergic alpha-1 Receptor Agonists/pharmacology , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Adrenergic beta-3 Receptor Agonists/pharmacology , Adrenergic beta-3 Receptor Antagonists/pharmacology , Animals , Behavior, Animal/physiology , Dopaminergic Neurons/physiology , Homeostasis/physiology , Locus Coeruleus/drug effects , Male , Mice , Neural Pathways/physiology , Neuronal Plasticity/physiology , Resilience, Psychological/drug effects , Stress, Psychological/physiopathology , Ventral Tegmental Area/drug effects
16.
Nat Commun ; 9(1): 3149, 2018 08 08.
Article En | MEDLINE | ID: mdl-30089879

The role of somatostatin interneurons in nucleus accumbens (NAc), a key brain reward region, remains poorly understood due to the fact that these cells account for < 1% of NAc neurons. Here, we use optogenetics, electrophysiology, and RNA-sequencing to characterize the transcriptome and functioning of NAc somatostatin interneurons after repeated exposure to cocaine. We find that the activity of somatostatin interneurons regulates behavioral responses to cocaine, with repeated cocaine reducing the excitability of these neurons. Repeated cocaine also induces transcriptome-wide changes in gene expression within NAc somatostatin interneurons. We identify the JUND transcription factor as a key regulator of cocaine action and confirmed, by use of viral-mediated gene transfer, that JUND activity in somatostatin interneurons influences behavioral responses to cocaine. Our results identify alterations in NAc induced by cocaine in a sparse population of somatostatin interneurons, and illustrate the value of studying brain diseases using cell type-specific whole transcriptome RNA-sequencing.


Adaptation, Physiological/drug effects , Cocaine/pharmacology , Interneurons/drug effects , Interneurons/metabolism , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Somatostatin/metabolism , Transcriptome , Animals , Brain/metabolism , Gene Expression Profiling , Gene Expression Regulation/drug effects , Gene Transfer Techniques , Locomotion , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Optogenetics/methods , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins c-jun/metabolism , Reward , Sequence Analysis, RNA , Somatostatin/pharmacology , Transcription Factors/drug effects
17.
Nat Commun ; 9(1): 653, 2018 02 08.
Article En | MEDLINE | ID: mdl-29422549

The original version of this Article contained an error in the spelling of the author Scott Edwards, which was incorrectly given as Scott Edward. This has now been corrected in both the PDF and HTML versions of the Article.

18.
Neuroscience ; 376: 108-116, 2018 04 15.
Article En | MEDLINE | ID: mdl-29476894

Women are twice as likely to be diagnosed with major depressive disorder. However, fewer studies in rodent models of depression have used female animals, leading to a relative lack of understanding of the female brain's response to stress, especially at a neural circuit level. In this study, we utilized a 6-day subchronic variable stress (SCVS) mouse model and measured novelty suppressed feeding as behavioral criteria to evaluate susceptibility to SCVS in male and female mice. First, we showed that SCVS induced a decrease in latency to eat (susceptible phenotype) in female mice, but not in males (resilient phenotype). After determining behavioral phenotypes, we investigated the firing activities of dopamine (DA) neurons in the ventral tegmental area (VTA), as well as the neurons that project from lateral habenula (LHb) to the VTA and from locus coeruleus (LC) to the VTA. Utilizing retrograding lumafluor fluorescent tracers and electrophysiology techniques, we performed cell type- and circuit-specific measures of neuronal firing rates. Our data show that SCVS significantly increased the firing rate of LHb-VTA circuit neurons in female mice when compared to that of their female controls, an effect that was absent in SCVS-exposed males. Interestingly, SCVS did not induce significant firing alterations in VTA DA neurons and LC-VTA circuit neurons in either female mice or male mice when compared to their stress-naïve controls. Overall, our data show sex differences in the LHb-VTA circuit responses to SCVS, and implicates a potential role of this projection in mediating vulnerability of female mice to stress-induced depression.


Depressive Disorder/physiopathology , Neuronal Plasticity/physiology , Neurons/physiology , Reward , Sex Characteristics , Stress, Psychological/physiopathology , Action Potentials , Animals , Brain/physiopathology , Disease Susceptibility , Female , Male , Mice, Inbred C57BL , Tissue Culture Techniques
19.
Pain ; 159(1): 175, 2018 01.
Article En | MEDLINE | ID: mdl-29076919

Increasing evidence suggests that the mesolimbic reward system plays critical roles in the regulation of depression and nociception; however, its circuitry and cellular mechanisms remain unclear. In this study, we investigated the output-specific regulatory roles of dopaminergic (DA) neurons within the ventral tegmental area (VTA) in depressive-like and nociceptive behaviors in mice subjected to unpredictable chronic mild stress (CMS), using the projection-specific electrophysiological recording, pharmacological manipulation, behavioral test, and molecular biology technologies. We demonstrated that CMS decreased the firing activity in VTA projecting to medial prefrontal cortex (VTA → mPFC), but not in VTA to nucleus accumbens (VTA → NAc), DA neurons. However, both VTA → mPFC and VTA → NAc DA neurons showed increased firing activity in response to morphine perfusion in CMS mice. Behavioral results showed that intra-VTA microinjection of morphine (25.5 ng/0.15 µL) relieved depressive-like behaviors, intriguingly, accompanied by a thermal hyperalgesia. Furthermore, the relief of depressive-like behaviors induced by intra-VTA injection of morphine in CMS mice could be prevented by blocking brain-derived neurotrophic factor (BDNF) signaling and mimicked by the administration of exogenous BDNF in mPFC rather than in NAc shell. Nociceptive responses induced by the activation of VTA DA neurons with morphine in CMS mice could be prevented by blocking BDNF signaling or mimicked by administration of exogenous BDNF in NAc shell, but not in mPFC. These results reveal projection-specific regulatory mechanisms of depression and nociception in the mesolimbic reward circuitry and provide new insights into the neural circuits involved in the processing of depressive and nociceptive information.


Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/pharmacology , Dopaminergic Neurons/drug effects , Nucleus Accumbens/drug effects , Prefrontal Cortex/drug effects , Ventral Tegmental Area/drug effects , Animals , Brain-Derived Neurotrophic Factor/metabolism , Depression , Dopaminergic Neurons/metabolism , Male , Mice , Morphine/pharmacology , Narcotics/pharmacology , Neural Pathways/drug effects , Neural Pathways/metabolism , Nociception/drug effects , Nucleus Accumbens/metabolism , Prefrontal Cortex/metabolism , Social Behavior , Ventral Tegmental Area/metabolism
20.
Nat Commun ; 8(1): 2220, 2017 12 20.
Article En | MEDLINE | ID: mdl-29263389

Alcohol-use disorder (AUD) is the most prevalent substance-use disorder worldwide. There is substantial individual variability in alcohol drinking behaviors in the population, the neural circuit mechanisms of which remain elusive. Utilizing in vivo electrophysiological techniques, we find that low alcohol drinking (LAD) mice have dramatically higher ventral tegmental area (VTA) dopamine neuron firing and burst activity. Unexpectedly, VTA dopamine neuron activity in high alcohol drinking (HAD) mice does not differ from alcohol naive mice. Optogenetically enhancing VTA dopamine neuron burst activity in HAD mice decreases alcohol drinking behaviors. Circuit-specific recordings reveal that spontaneous activity of nucleus accumbens-projecting VTA (VTA-NAc) neurons is selectively higher in LAD mice. Specifically activating this projection is sufficient to reduce alcohol consumption in HAD mice. Furthermore, we uncover ionic and cellular mechanisms that suggest unique neuroadaptations between the alcohol drinking groups. Together, these data identify a neural circuit responsible for individual alcohol drinking behaviors.


Alcohol Drinking/physiopathology , Behavior, Animal/physiology , Dopaminergic Neurons/metabolism , Nucleus Accumbens/physiopathology , Ventral Tegmental Area/physiopathology , Alcohol Drinking/metabolism , Animals , Mesencephalon/metabolism , Mesencephalon/physiopathology , Mice , Neural Pathways/physiology , Nucleus Accumbens/metabolism , Optogenetics , Ventral Tegmental Area/metabolism
...