Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Genetics ; 226(4)2024 04 03.
Article in English | MEDLINE | ID: mdl-38407959

ABSTRACT

The disruption of chromatin structure can result in transcription initiation from cryptic promoters within gene bodies. While the passage of RNA polymerase II is a well-characterized chromatin-disrupting force, numerous factors, including histone chaperones, normally stabilize chromatin on transcribed genes, thereby repressing cryptic transcription. DNA replication, which employs a partially overlapping set of histone chaperones, is also inherently disruptive to chromatin, but a role for DNA replication in cryptic transcription has never been examined. In this study, we tested the hypothesis that, in the absence of chromatin-stabilizing factors, DNA replication can promote cryptic transcription in Saccharomyces cerevisiae. Using a novel fluorescent reporter assay, we show that multiple factors, including Asf1, CAF-1, Rtt106, Spt6, and FACT, block transcription from a cryptic promoter, but are entirely or partially dispensable in G1-arrested cells, suggesting a requirement for DNA replication in chromatin disruption. Collectively, these results demonstrate that transcription fidelity is dependent on numerous factors that function to assemble chromatin on nascent DNA.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Histones/metabolism , Nuclear Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription, Genetic , Chromatin/genetics , Histone Chaperones/genetics , DNA , Molecular Chaperones/metabolism
2.
TH Open ; 7(4): e294-e302, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37964899

ABSTRACT

Introduction Atrial fibrillation (AF) increases the risk of ischemic stroke (IS). We hypothesized that the functional form of platelet receptor glycoprotein (GP) VI, GPVI-dimer, which binds to collagen and fibrin causing platelet activation, is overexpressed in patients with AF who have not had a stroke. Methods A total of 75 inpatients with AF were recruited. None were admitted with or had previously had thrombotic events, including IS or myocardial infarction. Platelet surface expression of total GPVI, GPVI-dimer, and the platelet activation marker P-selectin were quantitated by whole blood flow cytometry. Serum biomarkers were collected in AF patients. Results were compared against patients contemporaneously admitted to hospital with similar age and vascular risk-factor profiles without AF (noAF, n = 30). Results Patients with AF have similar total GPVI surface expression ( p = 0.58) and P-selectin exposure ( p = 0.73) on their platelets compared with noAF patients but demonstrate significantly higher GPVI-dimer expression ( p = 0.02 ). Patients with paroxysmal AF express similar GPVI-dimer levels compared with permanent AF and GPVI-dimer levels were not different between anticoagulated groups. Serum N-terminal pro b-type natriuretic peptide ( p < 0.0001 ) and high sensitivity C-reactive protein ( p < 0.0001 ) were significantly correlated with GPVI-dimer expression in AF platelets. AF was the only vascular risk factor that was independently associated with higher GPVI-dimer expression in the whole population ( p = 0.02 ) . Conclusion GPVI inhibition is being explored in clinical trials as a novel target for IS treatment. As GPVI-dimer is elevated in AF patients' platelets, the exploration of targeted GPVI-dimer inhibition for stroke prevention in patients at high risk of IS due to AF is supported.

3.
Res Pract Thromb Haemost ; 7(6): 102177, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37767064

ABSTRACT

Background: Heat shock protein 47 (HSP47) is an intracellular chaperone protein with an indispensable role in collagen biosynthesis in collagen-secreting cells. This chaperone has also been shown to be released and present on the surface of platelets. The inhibition of HSP47 in human platelets or its ablation in mouse platelets reduces platelet function in response to collagen and the glycoprotein (GP) VI collagen receptor agonist CRP-XL. Objectives: In this study, we sought, through experiments, to explore cellular distribution, trafficking, and influence on GPVI interactions to understand how HSP47 modulates collagen receptor signaling. Methods: HSP47-deficient mouse platelets and SMIH- treated human platelets were used to study the role of HSP47 in collagen mediated responses and signaling. Results: Using subcellular fractionation analysis and immunofluorescence microscopy, HSP47 was found to be localized to the platelet-dense tubular system. Following platelet stimulation, HSP47 mobilization to the cell surface was shown to be dependent on actin polymerization, a feature common to other dense tubular system resident platelet proteins that are released to the cell surface during activation. In this location, HSP47 was found to contribute to platelet adhesion to collagen or CRP-XL but not to GFOGER peptide (an integrin α2ß1-binding sequence within collagens), indicating selective effects of HSP47 on GPVI function. Dimerization of GPVI on the platelet surface increases its affinity for collagen. GPVI dimerization was reduced following HSP47 inhibition, as was collagen and CRP-XL-mediated signaling. Conclusion: The present study identifies a role for cell surface-localized HSP47 in modulating platelet responses to collagen through dimerization of GPVI, thereby enhancing platelet signaling and activation.

4.
Int J Mol Sci ; 23(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36232437

ABSTRACT

Recognition of RNA by receptors of the innate immune system is regulated by various posttranslational modifications. Different single 2'-O-ribose (2'-O-) methylations have been shown to convert TLR7/TLR8 ligands into specific TLR8 ligands, so we investigated whether the position of 2'-O-methylation is crucial for its function. To this end, we designed different 2'-O-methylated RNA oligoribonucleotides (ORN), investigating their immune activity in various cell systems and analyzing degradation under RNase T2 treatment. We found that the 18S rRNA-derived TLR7/8 ligand, RNA63, was differentially digested as a result of 2'-O-methylation, leading to variations in TLR8 and TLR7 inhibition. The suitability of certain 2'-O-methylated RNA63 derivatives as TLR8 agonists was further demonstrated by the fact that other RNA sequences were only weak TLR8 agonists. We were thus able to identify specific 2'-O-methylated RNA derivatives as optimal TLR8 ligands.


Subject(s)
Toll-Like Receptor 7 , Toll-Like Receptor 8 , Ligands , Methylation , Oligoribonucleotides/metabolism , Protein Processing, Post-Translational , RNA/metabolism , RNA, Ribosomal, 18S/metabolism , Ribose , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/metabolism
5.
Res Pract Thromb Haemost ; 6(3): e12697, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35494504

ABSTRACT

Background: In the fibrin-forming process, thrombin cleaves fibrinogen to fibrin, which form fibrils and then fibers, producing a gel-like clot. Thrombin also activates coagulation factor XIII (FXIII), which crosslinks fibrin γ-chains and α-chains, stabilizing the clot. Many proteins bind to fibrin, including FXIII, an established regulation of clot structure, and platelet glycoprotein VI (GPVI), whose contribution to clot function is largely unknown. FXIII is present in plasma, but the abundant FXIII in platelet cytosol becomes exposed to the surface of strongly activated platelets. Objectives: We determined if GPVI interacts with FXIII and how this might modulate clot formation. Methods: We measured interactions between recombinant proteins of the GPVI extracellular domain: GPVI-dimer (GPVI-Fc2) or monomer (GPVIex) and FXIII proteins (nonactivated and thrombin-activated FXIII, FXIII subunits A and B) by ELISA. Binding to fibrin clots and fibrin γ-chain crosslinking were analyzed by immunoblotting. Results: GPVI-dimer, but not GPVI-monomer, bound to FXIII. GPVI-dimer selectively bound to the FXIII A-subunit, but not to the B-subunit, an interaction that was decreased or abrogated by the GPVI-dimer-specific antibody mFab-F. The GPVI-dimer-FXIII interaction decreased the extent of γ-chain crosslinking, indicating a role in the regulation of clot formation. Conclusions: This is the first report of the specific interaction between GPVI-dimer and the A-subunit of FXIII, as determined in an in vitro system with defined components. GPVI-dimer-FXIII binding was inhibitory toward FXIII-catalyzed crosslinking of fibrin γ-chains in fibrin clots. This raises the possibility that GPVI-dimer may negatively modulate fibrin crosslinking induced by FXIII, lessening clot stability.

6.
PLoS One ; 17(1): e0262695, 2022.
Article in English | MEDLINE | ID: mdl-35041713

ABSTRACT

OBJECTIVES: Platelet activation underpins thrombus formation in ischemic stroke. The active, dimeric form of platelet receptor glycoprotein (GP) VI plays key roles by binding platelet ligands collagen and fibrin, leading to platelet activation. We investigated whether patients presenting with stroke expressed more GPVI on their platelet surface and had more active circulating platelets as measured by platelet P-selectin exposure. METHODS: 129 ischemic or hemorrhagic stroke patients were recruited within 8h of symptom onset. Whole blood was analyzed for platelet-surface expression of total GPVI, GPVI-dimer, and P-selectin by flow cytometry at admission and day-90 post-stroke. Results were compared against a healthy control population (n = 301). RESULTS: The platelets of stroke patients expressed significantly higher total GPVI and GPVI-dimer (P<0.0001) as well as demonstrating higher resting P-selectin exposure (P<0.0001), a measure of platelet activity, compared to the control group, suggesting increased circulating platelet activation. GPVI-dimer expression was strongly correlated circulating platelet activation [r2 = 0.88, P<0.0001] in stroke patients. Furthermore, higher platelet surface GPVI expression was associated with increased stroke severity at admission. At day-90 post-stroke, GPVI-dimer expression and was further raised compared to the level at admission (P<0.0001) despite anti-thrombotic therapy. All ischemic stroke subtypes and hemorrhagic strokes expressed significantly higher GPVI-dimer compared to controls (P<0.0001). CONCLUSIONS: Stroke patients express more GPVI-dimer on their platelet surface at presentation, lasting at least until day-90 post-stroke. Small molecule GPVI-dimer inhibitors are currently in development and the results of this study validate that GPVI-dimer as an anti-thrombotic target in ischemic stroke.


Subject(s)
Biomarkers/blood , Platelet Activation , Platelet Adhesiveness , Platelet Membrane Glycoproteins/analysis , Stroke/diagnosis , Aged , Aged, 80 and over , Case-Control Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged , Platelet Membrane Glycoproteins/chemistry , Platelet Membrane Glycoproteins/metabolism , Prognosis , Protein Multimerization , Stroke/metabolism
7.
Pathogens ; 12(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36678377

ABSTRACT

Chronic infection with the hepatitis B virus (HBV) affects an estimated 257 million people worldwide and can lead to liver diseases such as cirrhosis and liver cancer. Viral replication is generally considered not to be cytopathic, and although some HBV proteins may have direct carcinogenic effects, the majority of HBV infection-related disease is related to chronic inflammation resulting from disrupted antiviral responses and aberrant innate immune reactions. Like all cells, healthy and HBV-infected cells communicate with each other, as well as with other cell types, such as innate and adaptive immune cells. They do so by both interacting directly and by secreting factors into their environment. Such factors may be small molecules, such as metabolites, single viral proteins or host proteins, but can also be more complex, such as virions, protein complexes, and extracellular vesicles. The latter are small, membrane-enclosed vesicles that are exchanged between cells, and have recently gained a lot of attention for their potential to mediate complex communication and their potential for therapeutic repurposing. Here, we review how HBV infection affects the communication between HBV-infected cells and cells in their environment. We discuss the impact of these interactions on viral persistence in chronic infection, as well as their relation to HBV infection-related pathology.

8.
Cells ; 10(11)2021 11 20.
Article in English | MEDLINE | ID: mdl-34831475

ABSTRACT

Approximately 70 million humans worldwide are affected by chronic hepatitis D, which rapidly leads to liver cirrhosis and hepatocellular carcinoma due to chronic inflammation. The triggers and consequences of this chronic inflammation, induced by co-infection with the hepatitis D virus (HDV) and the hepatitis B virus (HBV), are poorly understood. Using CRISPR technology, we characterized the recognition of HDV mono- and co-infection by intracellular innate immunity and determined its influence on the viral life cycle and effector T-cell responses using different HBV and HDV permissive hepatoma cell lines. We showed that HDV infection is detected by MDA5 and -after a lag phase -induces a profound type I interferon response in the infected cells. The type I interferon response, however, was not able to suppress HDV replication or spread, thus providing a persistent trigger. Using engineered T-cells directed against the envelope proteins commonly used by HBV and HDV, we found that HDV immune recognition enhanced T-cell cytotoxicity. Interestingly, the T-cell effector function was enhanced independently of antigen presentation. These findings help to explain immune mediated tissue damage in chronic hepatitis D patients and indicate that combining innate triggers with T-cell activating therapies might allow for a curative approach.


Subject(s)
Hepatitis D/immunology , Hepatitis Delta Virus/immunology , Immunity, Innate , T-Lymphocytes, Cytotoxic/immunology , Antigen Presentation/immunology , Cell Line, Tumor , Humans , Interferon Type I/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , Receptors, Pattern Recognition/metabolism , Virus Replication
9.
Viruses ; 13(8)2021 08 07.
Article in English | MEDLINE | ID: mdl-34452429

ABSTRACT

As a result of a viral infection, viral genomes are not only recognized by RIG-I, but also lead to the activation of RNase L, which cleaves cellular RNA to generate the endogenous RIG-I ligand (eRL). The eRL was previously identified as a specific sequence derived from the internal transcribed spacer region 2, which bears a 2'3' cyclic phosphate instead of the common 5' triphosphate. By now, the generation of the eRL and its immunostimulatory effect were shown both in vitro and in reporter systems. In this work, we aimed to elucidate whether the eRL is also generated in Influenza A (IAV) and vesicular stomatitis virus (VSV) infected cells. RNA was extracted from virus-infected cells and used for immunostimulations as well as specific PCR-strategies to detect eRL cleavage. We show that the eRL is generated in IAV infected HEK293 cells, but we could not detect specific eRL fragments in VSV infected cells. Further, RIG-I mediated IFN-response depends not only on viral genomes but also on the eRL, as immunostimulatory properties remain present under 5'triphosphate degrading conditions. In summary, we prove the IAV infection induced eRL generation in HEK293 cells, amplifying the innate immune response.


Subject(s)
DEAD Box Protein 58/genetics , Host-Pathogen Interactions/genetics , Immunity, Innate , Influenza A virus/immunology , Receptors, Immunologic/genetics , A549 Cells , DEAD Box Protein 58/immunology , Genome, Viral , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Influenza A virus/pathogenicity , Influenza, Human/virology , Interferon Type I/genetics , Interferon Type I/immunology , Receptors, Immunologic/immunology , Vesicular stomatitis Indiana virus/immunology , Vesicular stomatitis Indiana virus/pathogenicity , Virus Replication/immunology
10.
J Thromb Haemost ; 19(8): 2056-2067, 2021 08.
Article in English | MEDLINE | ID: mdl-34032355

ABSTRACT

OBJECTIVE: The platelet collagen receptor glycoprotein VI (GPVI) has an independent role as a receptor for fibrin produced via the coagulation cascade. However, various reports of GPVI binding to immobilized fibrin(ogen) are not consistent. As a collagen receptor, GPVI-dimer is the functional form, but whether GPVI dimers or monomers bind to fibrin remains controversial. To resolve this, we analyzed GPVI binding to nascent fibrin clots, which more closely approximate physiological conditions. METHODS AND RESULTS: ELISA using biotinyl-fibrinogen immobilized on streptavidin-coated wells indicated that GPVI dimers do not bind intact fibrinogen. Clots were formed by adding thrombin to a mixture of near-plasma level of fibrinogen and recombinant GPVI ectodomain: GPVI dimer (GPVI-Fc2 or Revacept) or monomer (GPVI-His: single chain of Revacept GPVI domain, with His tag). Clot-bound proteins were analyzed by SDS-PAGE/immunoblotting. GPVI-dimer bound to noncrosslinked fibrin clots with classical one-site binding kinetics, with µM-level KD , and to crosslinked clots with higher affinity. Anti-GPVI-dimer (mFab-F) inhibited the binding. However, GPVI-His binding to either type of clot was nonsaturable and nearly linear, indicating very low affinity or nonspecific binding. In clots formed in the presence of platelets, clot-bound platelet-derived proteins were integrin αIIbß3, present at high levels, and GPVI. CONCLUSIONS: We conclude that dimeric GPVI is the receptor for fibrin, exhibiting a similar KD to those obtained for its binding to fibrinogen D-fragment and D-dimer, suggesting that fibrin(ogen)'s GPVI-binding site becomes exposed after fibrin formation or cleavage to fragment D. Analysis of platelets bound to fibrin clots indicates that platelet GPVI binds to fibrin fibers comprising the clot.


Subject(s)
Fibrin , Fibrinogen , Blood Platelets , Collagen , Humans , Platelet Membrane Glycoproteins , Receptors, Collagen
11.
J Extracell Vesicles ; 10(2): e12040, 2020 12.
Article in English | MEDLINE | ID: mdl-33363711

ABSTRACT

Extracellular vesicles (EVs) are emerging fundamental players in viral infections by shuttling viral components, mediating immune responses and likely the spread of the virus. However, the obstacles involved in purifying EVs and removing contaminating viral particles in a reliable and effective manner bottlenecks the full potential for the development of clinical and diagnostic treatment options targeting EV. Because of the similarities in size, density, membrane composition and mode of biogenesis of EVs and virions there are no standardized approaches for virus-removal from EV preparations yet. Functional EV studies also require EV samples that are devoid of antibody contaminants. Consequently, the study of EVs in virology needs reliable and effective protocols to purify EVs and remove contaminating antibodies and viral particles. Here, we established a protocol for EV purification from hepatitis B virus (HBV)-containing plasma by a combination of size-exclusion chromatography and affinity-based purification. After purification, EV samples were free of virus-sized particles, HBV surface antigen, HBV core antigen, antibodies or infectious material. Viral genomic contamination was also decreased following purification. By using appropriate antibodies and size parameters, this protocol could potentially be applied to purification of EVs from other viral samples. In summary, we established a fast, reproducible and robust approach for the removal of HBV from EV preparations. Looking forward to the point of purifying EVs from clinical samples, this method should enable studies shedding light on the underlying mechanisms of EVs in viral infections and their diagnostic and prognostic potential.


Subject(s)
Chromatography, Affinity/methods , Chromatography, Gel/methods , Extracellular Vesicles/physiology , Hepatitis B virus/physiology , Hepatitis B/metabolism , Plasma/metabolism , Extracellular Vesicles/chemistry , Extracellular Vesicles/virology , Hepatitis B/pathology , Hepatitis B/virology , Humans , Plasma/virology
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4252-4255, 2020 07.
Article in English | MEDLINE | ID: mdl-33018935

ABSTRACT

Medication adherence is a critical component and implicit assumption of the patient life cycle that is often violated, incurring financial and medical costs to both patients and the medical system at large. As obstacles to medication adherence are complex and varied, approaches to overcome them must themselves be multifaceted.This paper demonstrates one such approach using sensor data recorded by an Apple Watch to detect low counts of pill medication in standard prescription bottles. We use distributed computing on a cloud-based platform to efficiently process large volumes of high-frequency data and train a Gradient Boosted Tree machine learning model. Our final model yielded average cross-validated accuracy and F1 scores of 80.27% and 80.22%, respectively.We conclude this paper with two use cases in which wearable devices such as the Apple Watch can contribute to efforts to improve patient medication adherence.


Subject(s)
Machine Learning , Wearable Electronic Devices , Humans , Medication Adherence
13.
Nucleic Acids Res ; 48(18): 10397-10412, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32946572

ABSTRACT

The RNA helicase RIG-I plays a key role in sensing pathogen-derived RNA. Double-stranded RNA structures bearing 5'-tri- or diphosphates are commonly referred to as activating RIG-I ligands. However, endogenous RNA fragments generated during viral infection via RNase L also activate RIG-I. Of note, RNase-digested RNA fragments bear a 5'-hydroxyl group and a 2',3'-cyclic phosphate. How endogenous RNA fragments activate RIG-I despite the lack of 5'-phosphorylation has not been elucidated. Here we describe an endogenous RIG-I ligand (eRL) that is derived from the internal transcribed spacer 2 region (ITS2) of the 45S ribosomal RNA after partial RNase A digestion in vitro, RNase A protein transfection or RNase L activation. The immunostimulatory property of the eRL is dependent on 2',3'-cyclic phosphate and its sequence is characterized by a G-quadruplex containing sequence motif mediating guanosine-5'-triphosphate (GTP) binding. In summary, RNase generated self-RNA fragments with 2',3'-cyclic phosphate function as nucleotide-5'-triphosphate binding aptamers activating RIG-I.


Subject(s)
DEAD Box Protein 58/genetics , RNA Helicases/genetics , RNA, Ribosomal/genetics , RNA/genetics , Guanosine Triphosphate/genetics , Humans , Ligands , Phosphates/metabolism , RNA/chemistry , RNA Helicases/metabolism , Receptors, Immunologic , Ribonucleases/genetics
14.
World J Gastroenterol ; 26(21): 2781-2791, 2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32550754

ABSTRACT

Hepatitis D virus (HDV) is a global health threat with more than 15 million humans affected. Current treatment options are largely unsatisfactory leaving chronically infected humans at high risk to develop liver cirrhosis and hepatocellular carcinoma. HDV is the only human satellite virus known. It encodes only two proteins, and requires Hepatitis B virus (HBV) envelope protein expression for productive virion release and spread of the infection. How HDV could evolve and why HBV was selected as a helper virus remains unknown. Since the discovery of Na+-taurocholate co-transporting polypeptide as the essential uptake receptor for HBV and HDV, we are beginning to understand the interactions of HDV and the immune system. While HBV is mostly regarded a stealth virus, that escapes innate immune recognition, HBV-HDV coinfection is characterized by a strong innate immune response. Cytoplasmic RNA sensor melanoma differentiation antigen 5 has been reported to recognize HDV RNA replication and activate innate immunity. Innate immunity, however, seems not to impair HDV replication while it inhibits HBV. In this review, we describe what is known up-to-date about the interplay between HBV as a helper and HDV's immune evasion strategy and identify where additional research is required.


Subject(s)
Coinfection/immunology , Hepatitis B virus/immunology , Hepatitis B, Chronic/immunology , Hepatitis D, Chronic/immunology , Hepatitis Delta Virus/immunology , Immune Evasion , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/virology , Coinfection/complications , Coinfection/pathology , Coinfection/virology , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/pathology , Hepatitis B, Chronic/virology , Hepatitis D, Chronic/complications , Hepatitis D, Chronic/pathology , Hepatitis D, Chronic/virology , Hepatitis Delta Virus/genetics , Hepatitis Delta Virus/metabolism , Hepatitis delta Antigens/immunology , Hepatitis delta Antigens/metabolism , Humans , Immunity, Innate , Interferon-Induced Helicase, IFIH1/metabolism , Liver/immunology , Liver/pathology , Liver/virology , Liver Cirrhosis/immunology , Liver Cirrhosis/pathology , Liver Cirrhosis/virology , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/virology , Organic Anion Transporters, Sodium-Dependent/metabolism , RNA, Viral/immunology , RNA, Viral/metabolism , Receptors, Pattern Recognition/immunology , Receptors, Pattern Recognition/metabolism , Satellite Viruses/genetics , Satellite Viruses/immunology , Satellite Viruses/metabolism , Symporters/metabolism , Virus Replication/immunology
15.
Res Pract Thromb Haemost ; 4(2): 285-297, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32110760

ABSTRACT

OBJECTIVE: Platelet surface receptors are also present subcellularly in organelle membranes and can be expressed on the surface upon platelet activation. However, some receptors were reported to be decreased after activation. We analyzed the mechanism of activation-dependent expression for different receptors. METHODS: Flow cytometry using platelet-rich plasma or washed platelets was used to analyze receptor-expression changes after platelet activation by glycoprotein (GP) VI-specific agonists, crosslinked collagen-related peptide (CRP-XL) and convulxin (Cvx), and thrombin. Platelets prelabeled with fluorescent antibody specific for a receptor were allowed to adhere on immobilized collagen or fibrinogen and post-stained with antibody against the same receptor labeled with another fluorophore, allowing us to differentiate preexisting receptors from newly expressed receptors. RESULTS: Surface expression of αIIbß3 increased in CRP-XL-, Cvx-, or thrombin-stimulated platelets, but GPIb decreased due to shedding and internalization. Both total and dimeric GPVI increased in thrombin-induced platelets, but decreased in platelets stimulated by Cvx, as a result of internalization. The larger platelets showed a greater increase in surface receptor (α2ß1, αIIbß3, GPVI, GPIb) expression upon activation compared to the smaller ones. Pre- and postlabeling with antibody specific for the same receptor, but conjugated with different fluorophores, allowed us to differentiate the receptors expressed on the surface of resting platelets from receptors newly exposed to the surface upon platelet activation. CONCLUSIONS: Increased receptor expressions after activation are mainly manifested in the larger platelets. On platelets adhered on fibrinogen, the newly expressed receptors, especially GPVI, are localized in the lamellipodia of the spread platelets.

16.
Data Brief ; 23: 103784, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31372431

ABSTRACT

This data article is associated with the manuscript "GPVI surface expression and signalling pathway activation are increased in platelets from obese patients: elucidating potential anti-atherothrombotic targets in obesity" [1]. The study refers to a combination of different approaches in order to identify platelet-derived biomarkers in obesity. A total of 34 obese patients and their lean-matched controls were included in the study. We carried out a proteomic and functional (aggregation assays) analysis to find alterations in platelet-derived signalling pathways. After that, biochemical and mechanistic (flow cytometry assays) approaches were done in order to confirm a hyperactivation of the GPVI-related signalling pathway.

17.
Anal Chem ; 91(13): 8025-8035, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31074960

ABSTRACT

Analysis of oxylipins by liquid chromatography mass spectrometry (LC/MS) is challenging because of the small mass range occupied by this diverse lipid class, the presence of numerous structural isomers, and their low abundance in biological samples. Although highly sensitive LC/MS/MS methods are commonly used, further separation is achievable by using drift tube ion mobility coupled with high-resolution mass spectrometry (DTIM-MS). Herein, we present a combined analytical and computational method for the identification of oxylipins and fatty acids. We use a reversed-phase LC/DTIM-MS workflow able to profile and quantify (based on chromatographic peak area) the oxylipin and fatty acid content of biological samples while simultaneously acquiring full scan and product ion spectra. The information regarding accurate mass, collision-cross-section values in nitrogen (DTCCSN2), and retention times of the species found are compared to an internal library of lipid standards as well as the LIPID MAPS Structure Database by using specifically developed processing tools. Features detected within the DTCCSN2 and m/ z ranges of the analyzed standards are flagged as oxylipin-like species, which can be further characterized using drift-time alignment of product and precursor ions distinctive of DTIM-MS. This not only helps identification by reducing the number of annotations from LIPID MAPS but also guides discovery studies of potentially novel species. Testing the methodology on Salmonella enterica serovar Typhimurium-infected murine bone-marrow-derived macrophages and thrombin activated human platelets yields results in agreement with literature. This workflow has also annotated features as potentially novel oxylipins, confirming its ability in providing further insights into lipid analysis of biological samples.


Subject(s)
Chromatography, High Pressure Liquid/methods , Eicosanoids/analysis , Fatty Acids/analysis , Oxylipins/analysis , Tandem Mass Spectrometry/methods , Animals , Cells, Cultured , Humans , Ion Mobility Spectrometry/methods , Mice, Inbred C57BL
18.
Atherosclerosis ; 281: 62-70, 2019 02.
Article in English | MEDLINE | ID: mdl-30658193

ABSTRACT

BACKGROUND AND AIMS: Platelets play a fundamental role in the increased atherothrombotic risk related to central obesity since they show hyperactivation and lower sensitivity to antiplatelet therapy in obese patients. The main goal of this study was to identify platelet biomarkers related to the risk of atherothrombosis in obese patients, confirm platelet activation levels in these patients, and identify altered activation pathways. METHODS: Platelets were obtained from cohorts of obese patients and age- and sex-matched lean controls. Biochemical and proteome analyses were done by two-dimensional differential in-gel electrophoresis (2D-DIGE), mass spectrometry, and immunoblotting. Functional and mechanistic studies were conducted with aggregation assays and flow cytometry. RESULTS: We confirmed an up-regulation of αIIb and fibrinogen isoforms in platelets from obese patients. A complementary platelet aggregation approach showed platelets from obese patients are hyper-reactive in response to collagen and collagen-related peptide (CRP), revealing the collagen receptor Glycoprotein VI (GPVI) signalling as one of the altered pathways. We also found the active form of Src (pTyr418) is up-regulated in platelets from obese individuals, which links proteomics to aggregation data. Moreover, we showed that CRP-activated platelets present higher levels of tyrosine phosphorylated PLCγ2 in obese patients, confirming alterations in GPVI signalling. In line with the above, flow cytometry studies show higher surface expression levels of total GPVI and GPVI-dimer in obese platelets, both correlating with BMI. CONCLUSIONS: Our results suggest a higher activation state of SFKs-mediated signalling pathways in platelets from obese patients, with a primary involvement of GPVI signalling.


Subject(s)
Blood Platelets/metabolism , Obesity/blood , Platelet Activation , Platelet Membrane Glycoproteins/metabolism , Adolescent , Adult , Body Mass Index , Case-Control Studies , Female , Humans , Male , Obesity/diagnosis , Phospholipase C gamma/blood , Phosphorylation , Platelet Aggregation , Signal Transduction , Up-Regulation , Young Adult
19.
Sci Rep ; 8(1): 16677, 2018 11 12.
Article in English | MEDLINE | ID: mdl-30420683

ABSTRACT

Citalopram, a selective serotonin reuptake inhibitor (SSRI), inhibits platelet function in vitro. We have previously shown that this action is independent of citalopram's ability to block serotonin uptake by the serotonin transporter and must therefore be mediated via distinct pharmacological mechanisms. We now report evidence for two novel and putative mechanisms of citalopram-induced platelet inhibition. Firstly, in platelets, citalopram blocked U46619-induced Rap1 activation and subsequent platelet aggregation, but failed to inhibit U46619-induced increases in cytosolic Ca2+. Similarly, in neutrophils, citalopram inhibited Rap1 activation and downstream functions but failed to block PAF-induced Ca2+ mobilisation. In a cell-free system, citalopram also reduced CalDAG-GEFI-mediated nucleotide exchange on Rap1B. Secondly, the binding of anti-GPVI antibodies to resting platelets was inhibited by citalopram. Furthermore, citalopram-induced inhibition of GPVI-mediated platelet aggregation was instantaneous, reversible and displayed competitive characteristics, suggesting that these effects were not caused by a reduction in GPVI surface expression, but by simple competitive binding. In conclusion, we propose two novel, putative and distinct inhibitory mechanisms of action for citalopram: (1) inhibition of CalDAG-GEFI/Rap1 signalling, and (2) competitive antagonism of GPVI in platelets. These findings may aid in the development of novel inhibitors of CalDAG-GEFI/Rap1-dependent nucleotide exchange and novel GPVI antagonists.


Subject(s)
Citalopram/pharmacology , Neutrophils/drug effects , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Calcium/metabolism , Cytosol/metabolism , Humans , L-Lactate Dehydrogenase/metabolism , Models, Biological , Neutrophils/cytology , Platelet Membrane Glycoproteins/metabolism
20.
Res Pract Thromb Haemost ; 2(2): 370-379, 2018 Apr.
Article in English | MEDLINE | ID: mdl-30046741

ABSTRACT

BACKGROUND: Acute thrombotic syndromes lead to atherosclerotic plaque rupture with subsequent thrombus formation, myocardial infarction and stroke. Following rupture, flowing blood is exposed to plaque components, including collagen, which triggers platelet activation and aggregation. However, plaque rupture releases other components into the surrounding vessel which have the potential to influence platelet function and thrombus formation. OBJECTIVES: Here we sought to elucidate whether matrix metalloproteinase-13 (MMP-13), a collagenolytic metalloproteinase up-regulated in atherothrombotic and inflammatory conditions, affects platelet aggregation and thrombus formation. RESULTS: We demonstrate that MMP-13 is able to bind to platelet receptors alphaIIbbeta3 (αIIbß3) and platelet glycoprotein (GP)VI. The interactions between MMP-13, GPVI and αIIbß3 are sufficient to significantly inhibit washed platelet aggregation and decrease thrombus formation on fibrillar collagen. CONCLUSIONS: Our data demonstrate a role for MMP-13 in the inhibition of both platelet aggregation and thrombus formation in whole flowing blood, and may provide new avenues of research into the mechanisms underlying the subtle role of MMP-13 in atherothrombotic pathologies.

SELECTION OF CITATIONS
SEARCH DETAIL