Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMJ Case Rep ; 15(5)2022 May 19.
Article in English | MEDLINE | ID: mdl-35589264

ABSTRACT

A woman in her 70s presented to the hospital being generally unwell 8 days following the first dose of the AstraZeneca COVID-19 vaccination. She was in stage III acute kidney injury (AKI) with hyperkalaemia and metabolic acidosis. Urinalysis showed haematoproteinuria. Renal immunology screen was negative. She subsequently underwent two renal biopsies. The second biopsy showed features consistent with acute tubulointerstitial nephritis. She was commenced on oral steroids, which led to marked improvement of her renal function.There are reasons why AKI can occur post vaccination such as prerenal AKI from reduced oral intake postvaccination due to feeling unwell or developing vomiting or diarrhoea. Intravenous fluids were given to this patient but with no meaningful improvement in renal function. She developed a possible reaction to the AstraZeneca COVID-19 vaccine, which led to AKI as supported by the interstitial inflammation and presence of eosinophils on renal biopsy.


Subject(s)
Acute Kidney Injury , COVID-19 , Nephritis, Interstitial , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Female , Humans , Nephritis, Interstitial/chemically induced , Nephritis, Interstitial/pathology , Vaccination
2.
Am J Respir Cell Mol Biol ; 64(1): 79-88, 2021 01.
Article in English | MEDLINE | ID: mdl-32991819

ABSTRACT

Preclinical mouse models that recapitulate some characteristics of coronavirus disease (COVID-19) will facilitate focused study of pathogenesis and virus-host responses. Human agniotensin-converting enzyme 2 (hACE2) serves as an entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to infect people via binding to envelope spike proteins. Herein we report development and characterization of a rapidly deployable COVID-19 mouse model. C57BL/6J (B6) mice expressing hACE2 in the lung were transduced by oropharyngeal delivery of the recombinant human adenovirus type 5 that expresses hACE2 (Ad5-hACE2). Mice were infected with SARS-CoV-2 at Day 4 after transduction and developed interstitial pneumonia associated with perivascular inflammation, accompanied by significantly higher viral load in lungs at Days 3, 6, and 12 after infection compared with Ad5-empty control group. SARS-CoV-2 was detected in pneumocytes in alveolar septa. Transcriptomic analysis of lungs demonstrated that the infected Ad5-hACE mice had a significant increase in IFN-dependent chemokines Cxcl9 and Cxcl10, and genes associated with effector T-cell populations including Cd3 g, Cd8a, and Gzmb. Pathway analysis showed that several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched in the data set, including cytokine-cytokine receptor interaction, the chemokine signaling pathway, the NOD-like receptor signaling pathway, the measles pathway, and the IL-17 signaling pathway. This response is correlative to clinical response in lungs of patients with COVID-19. These results demonstrate that expression of hACE2 via adenovirus delivery system sensitized the mouse to SARS-CoV-2 infection and resulted in the development of a mild COVID-19 phenotype, highlighting the immune and inflammatory host responses to SARS-CoV-2 infection. This rapidly deployable COVID-19 mouse model is useful for preclinical and pathogenesis studies of COVID-19.


Subject(s)
Alveolar Epithelial Cells/immunology , COVID-19/immunology , Gene Expression , SARS-CoV-2/immunology , Signal Transduction/immunology , Adenoviridae/genetics , Adenoviridae/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Angiotensin-Converting Enzyme 2/biosynthesis , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/genetics , COVID-19/metabolism , COVID-19/pathology , Cytokines/genetics , Cytokines/immunology , Disease Models, Animal , Humans , Mice , Mice, Transgenic , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Signal Transduction/genetics , Transduction, Genetic
3.
PLoS One ; 10(9): e0135988, 2015.
Article in English | MEDLINE | ID: mdl-26356837

ABSTRACT

Three types of estrogen receptors (ER) exist in the heart, Esr1, Esr2 and the G protein-coupled estrogen receptor 1, Gper1. However, their relative importance in mediating estrogen protective action is unknown. We found that, in the male mouse ventricle, Gper1 transcripts are three- and seventeen-fold more abundant than Esr1 and Esr2 mRNAs, respectively. Analysis of the three ER knockouts (Esr1-/-, Esr2-/- and Gper1-/-) showed that only the Gper1-/- hearts lost their ability to be protected by 40 nM estrogen as measured by heart function, infarct size and mitochondrial Ca2+ overload, an index of mitochondrial permeability transition pore (mPTP) activity. Analysis of Akt, ERK1/2 and GSK-3ß salvage kinases uncovered Akt and ERK1/2 transient activation by estrogen whose phosphorylation increased during the first 5 min of non-ischemic perfusion. All these increase in phosphorylation effects were abrogated in Gper1-/-. Inhibition of MEK1/2/ERK1/2 (1 µM U0126) and PI-3K/Akt (10 µM LY294002) signaling showed that the MEK1/2/ERK1/2 pathway via GSK-3ß exclusively was responsible for cardioprotection as an addition of U0126 prevented estrogen-induced GSK-3ß increased phosphorylation, resistance to mitochondrial Ca2+-overload, functional recovery and protection against infarction. Further, inhibiting PKC translocation (1 µM chelerythrin-chloride) abolished estrogen-induced cardioprotection. These data indicate that estrogen-Gper1 acute coupling plays a key role in cardioprotection against ischemia/reperfusion injury in male mouse via a cascade involving PKC translocation, ERK1/2/GSK-3ß phosphorylation leading to the inhibition of the mPTP opening.


Subject(s)
Cardiotonic Agents/therapeutic use , Estrogens/therapeutic use , MAP Kinase Signaling System , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/enzymology , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Animals , Calcium/metabolism , Cardiotonic Agents/pharmacology , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Estrogens/pharmacology , Glycogen Synthase Kinase 3 , Glycogen Synthase Kinase 3 beta , Heart Ventricles/drug effects , Heart Ventricles/enzymology , Heart Ventricles/pathology , Heart Ventricles/physiopathology , MAP Kinase Signaling System/drug effects , Male , Mice, Inbred C57BL , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Models, Biological , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Phosphorylation/drug effects , Protein Kinase C/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/genetics , Recovery of Function/drug effects , Signal Transduction/drug effects , Time Factors
4.
PLoS Pathog ; 11(4): e1004832, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25875953

ABSTRACT

The infectious pathogen responsible for prion diseases is the misfolded, aggregated form of the prion protein, PrPSc. In contrast to recent progress in studies of laboratory rodent-adapted prions, current understanding of the molecular basis of human prion diseases and, especially, their vast phenotypic diversity is very limited. Here, we have purified proteinase resistant PrPSc aggregates from two major phenotypes of sporadic Creutzfeldt-Jakob disease (sCJD), determined their conformational stability and replication tempo in vitro, as well as characterized structural organization using recently emerged approaches based on hydrogen/deuterium (H/D) exchange coupled with mass spectrometry. Our data clearly demonstrate that these phenotypically distant prions differ in a major way with regard to their structural organization, both at the level of the polypeptide backbone (as indicated by backbone amide H/D exchange data) as well as the quaternary packing arrangements (as indicated by H/D exchange kinetics for histidine side chains). Furthermore, these data indicate that, in contrast to previous observations on yeast and some murine prion strains, the replication rate of sCJD prions is primarily determined not by conformational stability but by specific structural features that control the growth rate of prion protein aggregates.


Subject(s)
Creutzfeldt-Jakob Syndrome , PrPSc Proteins/chemistry , Blotting, Western , Humans , Immunoassay , Mass Spectrometry , Phenotype , Protein Stability , Protein Structure, Quaternary
SELECTION OF CITATIONS
SEARCH DETAIL
...