Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 42(5): 759-779.e12, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38744245

ABSTRACT

The lack of comprehensive diagnostics and consensus analytical models for evaluating the status of a patient's immune system has hindered a wider adoption of immunoprofiling for treatment monitoring and response prediction in cancer patients. To address this unmet need, we developed an immunoprofiling platform that uses multiparameter flow cytometry to characterize immune cell heterogeneity in the peripheral blood of healthy donors and patients with advanced cancers. Using unsupervised clustering, we identified five immunotypes with unique distributions of different cell types and gene expression profiles. An independent analysis of 17,800 open-source transcriptomes with the same approach corroborated these findings. Continuous immunotype-based signature scores were developed to correlate systemic immunity with patient responses to different cancer treatments, including immunotherapy, prognostically and predictively. Our approach and findings illustrate the potential utility of a simple blood test as a flexible tool for stratifying cancer patients into therapy response groups based on systemic immunoprofiling.


Subject(s)
Immunotherapy , Neoplasms , Humans , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/blood , Immunotherapy/methods , Flow Cytometry/methods , Transcriptome , Prognosis , Gene Expression Profiling/methods , Female , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology
2.
PeerJ ; 10: e13986, 2022.
Article in English | MEDLINE | ID: mdl-36275462

ABSTRACT

An increased frequency of B-cell lymphomas is observed in human immunodeficiency virus-1 (HIV-1)-infected patients, although HIV-1 does not infect B cells. Development of B-cell lymphomas may be potentially due to the action of the HIV-1 Tat protein, which is actively released from HIV-1-infected cells, on uninfected B cells. The exact mechanism of Tat-induced B-cell lymphomagenesis has not yet been precisely identified. Here, we ectopically expressed either Tat or its TatC22G mutant devoid of transactivation activity in the RPMI 8866 lymphoblastoid B cell line and performed a genome-wide analysis of host gene expression. Stable expression of both Tat and TatC22G led to substantial modifications of the host transcriptome, including pronounced changes in antiviral response and cell cycle pathways. We did not find any strong action of Tat on cell proliferation, but during prolonged culturing, Tat-expressing cells were displaced by non-expressing cells, indicating that Tat expression slightly inhibited cell growth. We also found an increased frequency of chromosome aberrations in cells expressing Tat. Thus, Tat can modify gene expression in cultured B cells, leading to subtle modifications in cellular growth and chromosome instability, which could promote lymphomagenesis over time.


Subject(s)
HIV-1 , Lymphoma, B-Cell , Humans , HIV-1/genetics , tat Gene Products, Human Immunodeficiency Virus/genetics , Ectopic Gene Expression , Lymphoma, B-Cell/genetics , Gene Expression
3.
J Virol ; 96(1): e0150521, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34613791

ABSTRACT

During evolution, viruses had to adapt to an increasingly complex environment of eukaryotic cells. Viral proteins that need to enter the cell nucleus or associate with nucleoli possess nuclear localization signals (NLSs) and nucleolar localization signals (NoLSs) for nuclear and nucleolar accumulation, respectively. As viral proteins are relatively small, acquisition of novel sequences seems to be a more complicated task for viruses than for eukaryotes. Here, we carried out a comprehensive analysis of the basic domain (BD) of HIV-1 Tat to show how viral proteins might evolve with NLSs and NoLSs without an increase in protein size. The HIV-1 Tat BD is involved in several functions, the most important being the transactivation of viral transcription. The BD also functions as an NLS, although it is substantially longer than a typical NLS. It seems that different regions in the BD could function as NLSs due to its enrichment with positively charged amino acids. Additionally, the high positive net charge inevitably causes the BD to function as an NoLS through a charge-specific mechanism. The integration of NLSs and NoLSs into functional domains enriched with positively charged amino acids might be a mechanism that allows the condensation of different functional sequences in small protein regions and, as a result, reduces protein size, influencing the origin and evolution of NLSs and NoLSs in viruses. IMPORTANCE Here, we investigated the molecular mechanism of nuclear localization signal (NLS) and nucleolar localization signal (NoLS) integration into the basic domain of HIV-1 Tat (49RKKRRQRRR57) and found that these two supplementary functions (i.e., function of NLS and function of NoLS) are embedded in the basic domain amino acid sequence. The integration of NLSs and NoLSs into functional domains of viral proteins enriched with positively charged amino acids is a mechanism that allows the concentration of different functions within small protein regions. Integration of NLS and NoLS into functional protein domains might have influenced the viral evolution, as this could prevent an increase in the protein size.


Subject(s)
Gene Expression Regulation, Viral , HIV Infections/virology , HIV-1/physiology , Nuclear Localization Signals , Protein Interaction Domains and Motifs , tat Gene Products, Human Immunodeficiency Virus/chemistry , tat Gene Products, Human Immunodeficiency Virus/metabolism , Amino Acid Sequence , Binding Sites , Cell Nucleolus/metabolism , Cell Nucleus/metabolism , Consensus Sequence , Evolution, Molecular , Host-Pathogen Interactions , Models, Molecular , Protein Binding , Protein Transport , Structure-Activity Relationship , Viral Proteins/metabolism , tat Gene Products, Human Immunodeficiency Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL