Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 13(12)2021 12 14.
Article in English | MEDLINE | ID: mdl-34960782

ABSTRACT

SARS-CoV-2 is a new type of coronavirus that has caused worldwide pandemic. The disease induced by SARS-CoV-2 is called COVID-19. A majority of people with COVID-19 have relatively mild respiratory symptoms. However, a small percentage of COVID-19 patients develop a severe disease where multiple organs are affected. These severe forms of SARS-CoV-2 infections are associated with excessive production of pro-inflammatory cytokines, so called "cytokine storm". Inflammasomes, which are protein complexes of the innate immune system orchestrate development of local and systemic inflammation during virus infection. Recent data suggest involvement of inflammasomes in severe COVID-19. Activation of inflammasome exerts two major effects: it activates caspase-1-mediated processing and secretion of pro-inflammatory cytokines IL-1ß and IL-18, and induces inflammatory cell death, pyroptosis, via protein called gasdermin D. Here, we provide comprehensive review of current understanding of the activation and possible functions of different inflammasome structures during SARS-CoV-2 infection and compare that to response caused by influenza A virus. We also discuss how novel SARS-CoV-2 mRNA vaccines activate innate immune response, which is a prerequisite for the activation of protective adaptive immune response.


Subject(s)
COVID-19/immunology , Inflammasomes/immunology , Adaptive Immunity , COVID-19 Vaccines , Cell Death , Cytokine Release Syndrome , Cytokines/immunology , Humans , Immunity, Innate , Inflammation , Interleukin-18 , Interleukin-1beta , Neoplasm Proteins , Pyroptosis , SARS-CoV-2/immunology , mRNA Vaccines
2.
Pharmacol Res Perspect ; 2(3): e00045, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25505591

ABSTRACT

Kidney ischemia-reperfusion (I/R) injury is a common cause of acute kidney injury. We tested whether dexmedetomidine (Dex), an alpha2 adrenoceptor (α2-AR) agonist, protects against kidney I/R injury. Sprague-Dawley rats were divided into four groups: (1) Sham-operated group; (2) I/R group (40 min ischemia followed by 24 h reperfusion); (3) I/R group + Dex (1 µg/kg i.v. 60 min before the surgery), (4) I/R group + Dex (10 µg/kg). The effects of Dex postconditiong (Dex 1 or 10 µg/kg i.v. after reperfusion) as well as the effects of peripheral α2-AR agonism with fadolmidine were also examined. Hemodynamic effects were monitored, renal function measured, and acute tubular damage along with monocyte/macrophage infiltration scored. Kidney protein kinase B, toll like receptor 4, light chain 3B, p38 mitogen-activated protein kinase (p38 MAPK), sirtuin 1, adenosine monophosphate kinase (AMPK), and endothelial nitric oxide synthase (eNOS) expressions were measured, and kidney transciptome profiles analyzed. Dex preconditioning, but not postconditioning, attenuated I/R injury-induced renal dysfunction, acute tubular necrosis and inflammatory response. Neither pre- nor postconditioning with fadolmidine protected kidneys. Dex decreased blood pressure more than fadolmidine, ameliorated I/R-induced impairment of autophagy and increased renal p38 and eNOS expressions. Dex downregulated 245 and upregulated 61 genes representing 17 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, in particular, integrin pathway and CD44. Ingenuity analysis revealed inhibition of Rac and nuclear factor (erythroid-derived 2)-like 2 pathways, whereas aryl hydrocarbon receptor (AHR) pathway was activated. Dex preconditioning ameliorates kidney I/R injury and inflammatory response, at least in part, through p38-CD44-pathway and possibly also through ischemic preconditioning.

3.
Chem Biol Drug Des ; 81(4): 463-73, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22578098

ABSTRACT

The interplay between cardiac sarcoplasmic Ca(2+)ATPase and phospholamban is a key regulating factor of contraction and relaxation in the cardiac muscle. In heart failure, aberrations in the inhibition of sarcoplasmic Ca(2+)ATPase by phospholamban are associated with anomalies in cardiac functions. In experimental heart failure models, modulation of the interaction between these two proteins has been shown to be a potential therapeutic approach. The aim of our research was to find molecules able to interfere with the inhibitory activity of phospholamban on sarcoplasmic Ca(2+)ATPase. For this purpose, a portion of phospholamban was synthesized and used as target for a phage-display peptide library screening. The cyclic peptide C-Y-W-E-L-E-W-L-P-C-A was found to bind to phospholamban (1-36) with high specificity. Its functional activity was tested in Ca(2+)uptake assays utilizing preparations from cardiac sarcoplasmic reticulum. By synthesizing and testing a series of alanine point-mutated cyclic peptides, we identified which amino acid was important for the inhibition of the phospholamban function. The structures of active and inactive alanine-mutated cyclic peptides, and of phospholamban (1-36), were determined by NMR. This structure-activity analysis allowed building a model of phospholamban -cyclic peptide complex. Thereafter, a simple pharmacophore was defined and used for the design of small molecules. Finally, examples of such molecules were synthesized and characterized as phospholamban inhibitors.


Subject(s)
Calcium-Binding Proteins/metabolism , Peptides, Cyclic/chemistry , Amino Acid Sequence , Animals , Calcium/metabolism , Calcium-Binding Proteins/antagonists & inhibitors , Calcium-Binding Proteins/chemical synthesis , Drug Design , Drug Evaluation, Preclinical , Guinea Pigs , Heart/drug effects , Humans , Models, Molecular , Myocardium/metabolism , Peptide Library , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/pharmacology , Protein Binding , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL