Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 313
Filter
1.
Expert Rev Anti Infect Ther ; : 1-15, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39269198

ABSTRACT

INTRODUCTION: The human respiratory syncytial virus (hRSV) is one of childhood diseases' most common respiratory pathogens and is associated with lower respiratory tract infections. The peak in disease that this virus can elicit during outbreaks is often a significant burden for healthcare systems worldwide. Despite theapproval of treatments against hRSV, this pathogen remains one the most common causative agent of infant mortality around the world. AREAS COVERED: This review focuses on the key prognostic and immunomodulatory biomarkers associated with hRSV infection, as well as prophylactic monoclonal antibodies and vaccines. The goal is to catalyze a paradigm shift within the scientific community toward the discovery of novel targets to predict the clinical outcome of infected patients, as well as the development of novel antiviral agents targeting hRSV. The most pertinent research on this topic was systematically searched and analyzed using PubMed ISI Thomson Scientific databases. EXPERT OPINION: Despite advances in approved therapies against hRSV, it is crucial to continue researching to develop new therapies and to find specific biomarkers to predict the severity of infection. Along these lines, the use of multi-omics data, artificial intelligence and natural-derived compounds with antiviral activity could be evaluated to fight hRSV and develop methods for rapid diagnosis of severity.

2.
Vaccine ; 42(23): 126203, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39178767

ABSTRACT

SARS-CoV-2 is the causative virus of COVID-19, which has been responsible for millions of deaths worldwide since its discovery. After its emergence, several variants have been identified that challenge the efficacy of the available vaccines. Previously, we generated and evaluated a vaccine based on a recombinant Bacillus Calmette-Guérin (rBCG) expressing the nucleoprotein (N) of SARS-CoV-2 (rBCG-N-SARS-CoV-2). This protein is a highly immunogenic antigen and well conserved among variants. Here, we tested the administration of this vaccine with recombinant N and viral Spike proteins (S), or Receptor Binding Domain (RBD-Omicron variant), plus a booster with the recombinant proteins only, as a novel and effective strategy to protect against SARS-CoV-2 variants. METHODS: BALB/c mice were immunized with rBCG-N-SARS-CoV-2 and recombinant SARS-CoV-2 proteins in Alum adjuvant, followed by a booster with recombinant proteins to assess the safety and virus-specific cellular and humoral immune responses against SARS-CoV-2 antigens. RESULTS: Immunization with rBCG-N-SARS-CoV-2 + recombinant proteins as a vaccine was safe and promoted the activation of CD4+ and CD8+ T cells that recognize SARS-CoV-2 N, S, and RBD antigens. These cells were able to secrete cytokines with an antiviral profile. This immunization strategy also induced robust titers of specific antibodies against N, S, and RBD and neutralizing antibodies of SARS-CoV-2. CONCLUSIONS: Co-administration of the rBCG-N-SARS-CoV-2 vaccine with recombinant SARS-CoV-2 proteins could be an effective alternative to control particular SARS-CoV-2 variants. Due to its safety and capacity to induce virus-specific immune responses, we believe the rBCG-N-SARS-CoV-2 + Proteins vaccine could be an attractive candidate to protect against this virus, especially in newborns.


Subject(s)
Antibodies, Viral , BCG Vaccine , COVID-19 Vaccines , COVID-19 , Mice, Inbred BALB C , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Mice , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Antibodies, Viral/blood , Antibodies, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , BCG Vaccine/immunology , BCG Vaccine/administration & dosage , BCG Vaccine/genetics , Female , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Immunization, Secondary , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Immunity, Humoral , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/genetics , CD8-Positive T-Lymphocytes/immunology , Phosphoproteins/immunology , Phosphoproteins/genetics , Adjuvants, Immunologic/administration & dosage , Immunity, Cellular
3.
Immunology ; 173(3): 481-496, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39161170

ABSTRACT

Acute respiratory infections are the leading cause of death and illness in children under 5 years old and represent a significant burden in older adults. Primarily caused by viruses infecting the lower respiratory tract, symptoms include cough, congestion, and low-grade fever, potentially leading to bronchiolitis and pneumonia. Messenger ribonucleic acid (mRNA)-based vaccines are biopharmaceutical formulations that employ mRNA molecules to induce specific immune responses, facilitating the expression of viral or bacterial antigens and promoting immunization against infectious diseases. Notably, this technology had significant relevance during the COVID-19 pandemic, as these formulations helped to limit SARS-CoV-2 virus infections, hospitalizations, and deaths. Importantly, mRNA vaccines promise to be implemented as new alternatives for fighting other respiratory viruses, such as influenza, human respiratory syncytial virus, and human metapneumovirus. This review article analyzes mRNA-based vaccines' main contributions, perspectives, challenges, and implications against respiratory viruses.


Subject(s)
Respiratory Tract Infections , mRNA Vaccines , Humans , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/virology , Respiratory Tract Infections/immunology , Vaccine Development , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Vaccines, Synthetic/immunology , Viral Vaccines/immunology , Animals , COVID-19 Vaccines/immunology , RNA, Messenger/genetics , RNA, Messenger/immunology
4.
Microorganisms ; 12(8)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39203555

ABSTRACT

Respiratory viral infections pose a significant public health threat, particularly in children and older adults, with high mortality rates. Some of these pathogens are the human respiratory syncytial virus (hRSV), severe acute respiratory coronavirus-2 (SARS-CoV-2), influenza viruses (IV), human parvovirus B19 (B19V), and human bocavirus 1 (HBoV1). These viruses cause various respiratory symptoms, including cough, fever, bronchiolitis, and pneumonia. Notably, these viruses can also impact the central nervous system (CNS), leading to acute manifestations such as seizures, encephalopathies, encephalitis, neurological sequelae, and long-term complications. The precise mechanisms by which these viruses affect the CNS are not fully understood. Glial cells, specifically microglia and astrocytes within the CNS, play pivotal roles in maintaining brain homeostasis and regulating immune responses. Exploring how these cells interact with viral pathogens, such as hRSV, SARS-CoV-2, IVs, B19V, and HBoV1, offers crucial insights into the significant impact of respiratory viruses on the CNS. This review article examines hRSV, SARS-CoV-2, IV, B19V, and HBoV1 interactions with microglia and astrocytes, shedding light on potential neurological consequences.

5.
Vaccines (Basel) ; 12(8)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39204018

ABSTRACT

OBJECTIVES: In this study, we aimed to evaluate the non-inferiority of a quadrivalent influenza vaccine (QIV) developed by Sinovac Biotech Co., Ltd. (Sinovac, Beijing, China) by comparing its immunogenicity and safety with a comparator QIV (Vaxigrip Tetra®) in a population aged 3 years and older in Chile and the Philippines. METHODS: A phase 3, non-inferiority, double-blind, randomized controlled, multicenter clinical trial was conducted in the southern hemisphere (SH) 2023 influenza season. Participants aged ≥ 3 years old with stable health were randomized 1:1 to receive either Sinovac QIV or comparator QIV. The co-primary outcomes were immunological non-inferiority for Sinovac QIV versus the comparator against each strain contained in the vaccines in terms of seroconversion rates (SCRs) and geometric mean titers (GMTs) of hemagglutination inhibition (HI) antibodies 28 days after final vaccination. RESULTS: A total of 2039 participants were vaccinated (1019 Sinovac QIV; 1020 comparator QIV). Sinovac QIV induced non-inferior immune responses to all four strains as compared to comparator QIV, with slightly higher GMTs than those of comparator QIV: GMT ratios (lower limit 95% confidence interval (CI)) were 1.8 (1.6) for A(H1N1), 1.4 (1.3) for A (H3N2), 1.3 (1.1) for B Victoria and 1.2 (1.1) for B Yamagata; observed seroconversion rate differences (lower limit 95% CI) were 9.6% (6.7) for A(H1N1), 7.0% (3.5) for A(H3N2), 2.4% (-0.03) for B Victoria and 6.8% (3.0) for B Yamagata. Adverse reactions were similar across the two groups and no vaccine-related serious adverse events were reported. CONCLUSIONS: The immunogenicity of Sinovac QIV was non-inferior to that of the comparator QIV in these populations aged 3 years and older, and safety was comparable.

6.
Front Immunol ; 15: 1427501, 2024.
Article in English | MEDLINE | ID: mdl-39131157

ABSTRACT

Objective: to evaluate the immune response to the SARS-CoV-2 vaccines in adults with immune-mediated rheumatic diseases (IMRDs) in comparison to healthy individuals, observed 1-20 weeks following the fourth vaccine dose. Additionally, to evaluate the impact of immunosuppressive therapies, vaccination schedules, the time interval between vaccination and sample collection on the vaccine's immune response. Methods: We designed a longitudinal observational study conducted at the rheumatology department of Hospital de Copiapó. Neutralizing antibodies (Nabs) titers against the Wuhan and Omicron variant were analyzed between 1-20 weeks after administration of the fourth dose of the SARS-CoV-2 vaccine to 341 participants (218 IMRD patients and 123 healthy controls). 218 IMRD patients with rheumatoid arthritis (RA), psoriatic arthritis (PsA), ankylosing spondylitis (AS), systemic lupus erythematosus (SLE), systemic vasculitis (VS) and systemic scleroderma (SS) were analyzed. Results: Performing a comparison between the variants, Wuhan vs Omicron, we noticed that there were significant differences (p<0.05) in the level of the ID50, both for healthy controls and for patients with IMRDs. The humoral response of patients with IMRDs is significantly lower compared to healthy controls for the Omicron variant of SARS-CoV-2 (p = 0.0015). The humoral response of patients with IMRDs decreases significantly when the time interval between vaccination and sample collection is greater than 35 days. This difference was observed in the response, both for the Wuhan variant and for the Omicron variant. Conclusion: The IMRDs patients, the humoral response variation in the SARS-CoV-2 vaccine depends on doses and type of vaccine administered, the humoral response times and the treatment that these patients are receiving.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Rheumatic Diseases , SARS-CoV-2 , Humans , Male , Middle Aged , Female , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Rheumatic Diseases/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Adult , Aged , Longitudinal Studies , Vaccination
7.
Commun Biol ; 7(1): 811, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965360

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease affecting the central nervous system (CNS) in animals that parallels several clinical and molecular traits of multiple sclerosis in humans. Herpes simplex virus type 1 (HSV-1) infection mainly causes cold sores and eye diseases, yet eventually, it can also reach the CNS, leading to acute encephalitis. Notably, a significant proportion of healthy individuals are likely to have asymptomatic HSV-1 brain infection with chronic brain inflammation due to persistent latent infection in neurons. Because cellular senescence is suggested as a potential factor contributing to the development of various neurodegenerative disorders, including multiple sclerosis, and viral infections may induce a premature senescence state in the CNS, potentially increasing susceptibility to such disorders, here we examine the presence of senescence-related markers in the brains and spinal cords of mice with asymptomatic HSV-1 brain infection, EAE, and both conditions. Across all scenarios, we find a significant increases of senescence biomarkers in the CNS with some differences depending on the analyzed group. Notably, some senescence biomarkers are exclusively observed in mice with the combined conditions. These results indicate that asymptomatic HSV-1 brain infection and EAE associate with a significant expression of senescence biomarkers in the CNS.


Subject(s)
Brain , Cellular Senescence , Herpes Simplex , Herpesvirus 1, Human , Multiple Sclerosis , Animals , Mice , Brain/virology , Brain/pathology , Brain/metabolism , Multiple Sclerosis/virology , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , Herpesvirus 1, Human/physiology , Herpesvirus 1, Human/pathogenicity , Herpes Simplex/virology , Herpes Simplex/pathology , Female , Mice, Inbred C57BL , Encephalomyelitis, Autoimmune, Experimental/virology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Phenotype , Central Nervous System/virology , Central Nervous System/metabolism , Central Nervous System/pathology , Spinal Cord/virology , Spinal Cord/metabolism , Spinal Cord/pathology , Biomarkers/metabolism , Encephalitis, Herpes Simplex/virology , Encephalitis, Herpes Simplex/pathology , Encephalitis, Herpes Simplex/metabolism
8.
Autoimmunity ; 57(1): 2380465, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39034498

ABSTRACT

Systemic Lupus Erythematosus (SLE) is an autoimmune disorder that causes a breakdown of immune tolerance. Current treatments mainly involve general immunosuppression, increasing the risk of infections. On the other hand, Bacillus Calmette-Guérin (BCG) has been investigated as a potential therapy for autoimmune diseases in recent years, prompting an ongoing investigation. This study aimed to evaluate the effect of BCG vaccination on early and late clinical presentation of SLE in a murine disease model. MRL/MPJ-Faslpr mice were immunized with BCG or treated with PBS as a control. The progress of the disease was evaluated at 27 days post-immunization (dpi) (early) and 56 dpi (late). Clinical parameters and proteinuria were monitored. Blood samples were collected for measurement of antinuclear antibodies (ANAs), anti-double-stranded DNA (anti-dsDNA), and cytokine determination was performed using ELISA. Samples collected from mice were analyzed by flow cytometry and histopathology. We observed a clinical improvement in BCG-treated mice, reduced proteinuria in the latter stages of the disease, and decreased TNF-α. However, BCG did not elicit significant changes in ANAs, anti-dsDNA, histopathological scores, or immune cell infiltration. BCG was only partially beneficial in an SLE mouse model, and further research is needed to determine whether the immunity induced by this vaccine can counteract lupus's autoimmune response.


Subject(s)
Antibodies, Antinuclear , BCG Vaccine , Disease Models, Animal , Lupus Erythematosus, Systemic , Animals , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/drug therapy , Mice , Antibodies, Antinuclear/blood , Antibodies, Antinuclear/immunology , BCG Vaccine/immunology , Female , Cytokines/metabolism , Proteinuria/immunology , Proteinuria/etiology , Vaccination , Mice, Inbred MRL lpr , Mycobacterium bovis/immunology , Tumor Necrosis Factor-alpha/blood
9.
Front Immunol ; 15: 1363572, 2024.
Article in English | MEDLINE | ID: mdl-38911850

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the respiratory distress condition known as COVID-19. This disease broadly affects several physiological systems, including the gastrointestinal, renal, and central nervous (CNS) systems, significantly influencing the patient's overall quality of life. Additionally, numerous risk factors have been suggested, including gender, body weight, age, metabolic status, renal health, preexisting cardiomyopathies, and inflammatory conditions. Despite advances in understanding the genome and pathophysiological ramifications of COVID-19, its precise origins remain elusive. SARS-CoV-2 interacts with a receptor-binding domain within angiotensin-converting enzyme 2 (ACE2). This receptor is expressed in various organs of different species, including humans, with different abundance. Although COVID-19 has multiorgan manifestations, the main pathologies occur in the lung, including pulmonary fibrosis, respiratory failure, pulmonary embolism, and secondary bacterial pneumonia. In the post-COVID-19 period, different sequelae may occur, which may have various causes, including the direct action of the virus, alteration of the immune response, and metabolic alterations during infection, among others. Recognizing the serious adverse health effects associated with COVID-19, it becomes imperative to comprehensively elucidate and discuss the existing evidence surrounding this viral infection, including those related to the pathophysiological effects of the disease and the subsequent consequences. This review aims to contribute to a comprehensive understanding of the impact of COVID-19 and its long-term effects on human health.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/epidemiology , Angiotensin-Converting Enzyme 2/metabolism , Pandemics
10.
Front Endocrinol (Lausanne) ; 15: 1381180, 2024.
Article in English | MEDLINE | ID: mdl-38752179

ABSTRACT

Background: The prevalence of autism spectrum disorder (ASD) has significantly risen in the past three decades, prompting researchers to explore the potential contributions of environmental factors during pregnancy to ASD development. One such factor of interest is gestational hypothyroxinemia (HTX), a frequent condition in pregnancy associated with cognitive impairments in the offspring. While retrospective human studies have linked gestational HTX to autistic traits, the cellular and molecular mechanisms underlying the development of ASD-like phenotypes remain poorly understood. This study used a mouse model of gestational HTX to evaluate ASD-like phenotypes in the offspring. Methods: To induce gestational HTX, pregnant mice were treated with 2-mercapto-1-methylimidazole (MMI), a thyroid hormones synthesis inhibitor, in the tap-drinking water from embryonic days (E) 10 to E14. A separate group received MMI along with a daily subcutaneous injection of T4, while the control group received regular tap water during the entire pregnancy. Female and male offspring underwent assessments for repetitive, anxious, and social behaviors from postnatal day (P) 55 to P64. On P65, mice were euthanized for the evaluation of ASD-related inflammatory markers in blood, spleen, and specific brain regions. Additionally, the expression of glutamatergic proteins (NLGN3 and HOMER1) was analyzed in the prefrontal cortex and hippocampus. Results: The HTX-offspring exhibited anxious-like behavior, a subordinate state, and impaired social interactions. Subsequently, both female and male HTX-offspring displayed elevated proinflammatory cytokines in blood, including IL-1ß, IL-6, IL-17A, and TNF-α, while only males showed reduced levels of IL-10. The spleen of HTX-offspring of both sexes showed increased Th17/Treg ratio and M1-like macrophages. In the prefrontal cortex and hippocampus of male HTX-offspring, elevated levels of IL-17A and reduced IL-10 were observed, accompanied by increased expression of hippocampal NLGN3 and HOMER1. All these observations were compared to those observed in the Control-offspring. Notably, the supplementation with T4 during the MMI treatment prevents the development of the observed phenotypes. Correlation analysis revealed an association between maternal T4 levels and specific ASD-like outcomes. Discussion: This study validates human observations, demonstrating for the first time that gestational HTX induces ASD-like phenotypes in the offspring, highlighting the need of monitoring thyroid function during pregnancy.


Subject(s)
Autism Spectrum Disorder , Prenatal Exposure Delayed Effects , Animals , Female , Pregnancy , Autism Spectrum Disorder/etiology , Autism Spectrum Disorder/metabolism , Mice , Male , Prenatal Exposure Delayed Effects/metabolism , Phenotype , Behavior, Animal , Hypothyroidism/metabolism , Thyroxine/blood , Biomarkers/metabolism , Mice, Inbred C57BL , Pregnancy Complications/metabolism , Disease Models, Animal , Inflammation/metabolism , Social Behavior
11.
Front Immunol ; 15: 1372193, 2024.
Article in English | MEDLINE | ID: mdl-38812507

ABSTRACT

Background: Vaccine effectiveness against SARS-CoV-2 infection has been somewhat limited due to the widespread dissemination of the Omicron variant, its subvariants, and the immune response dynamics of the naturally infected with the virus. Methods: Twelve subjects between 3-17 years old (yo), vaccinated with two doses of CoronaVac®, were followed and diagnosed as breakthrough cases starting 14 days after receiving the second dose. Total IgGs against different SARS-CoV-2 proteins and the neutralizing capacity of these antibodies after infection were measured in plasma. The activation of CD4+ and CD8+ T cells was evaluated in peripheral blood mononuclear cells stimulated with peptides derived from the proteins from the wild-type (WT) virus and Omicron subvariants by flow cytometry, as well as different cytokines secretion by a Multiplex assay. Results: 2 to 8 weeks post-infection, compared to 4 weeks after 2nd dose of vaccine, there was a 146.5-fold increase in neutralizing antibody titers against Omicron and a 38.7-fold increase against WT SARS-CoV-2. Subjects showed an increase in total IgG levels against the S1, N, M, and NSP8 proteins of the WT virus. Activated CD4+ T cells showed a significant increase in response to the BA.2 subvariant (p<0.001). Finally, the secretion of IL-2 and IFN-γ cytokines showed a discreet decrease trend after infection in some subjects. Conclusion: SARS-CoV-2 infection in the pediatric population vaccinated with an inactivated SARS-CoV-2 vaccine produced an increase in neutralizing antibodies against Omicron and increased specific IgG antibodies for different SARS-CoV-2 proteins. CD4+ T cell activation was also increased, suggesting a conserved cellular response against the Omicron subvariants, whereas Th1-type cytokine secretion tended to decrease. Clinical Trial Registration: clinicaltrials.gov #NCT04992260.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , CD4-Positive T-Lymphocytes , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Adolescent , Child , Child, Preschool , Female , Humans , Male , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Cytokines/immunology , Cytokines/blood , Immunoglobulin G/blood , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Vaccination , Follow-Up Studies
12.
Vaccines (Basel) ; 12(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38675736

ABSTRACT

Immunosenescence refers to age-related alterations in immune system function affecting both the humoral and cellular arm of immunity. Understanding immunosenescence and its impact on the vaccination of older adults is essential since primary vaccine responses in older individuals can fail to generate complete protection, especially vaccines targeting infections with increased incidence among the elderly, such as the respiratory syncytial virus. Here, we review clinical trials of both candidate and approved vaccines against respiratory syncytial virus (RSV) that include adults aged ≥50 years, with an emphasis on the evaluation of immunogenicity parameters. Currently, there are 10 vaccine candidates and 2 vaccines approved for the prevention of RSV in the older adult population. The number of registered clinical trials for this age group amounts to 42. Our preliminary evaluation of published results and interim analyses of RSV vaccine clinical trials indicates efficacy in older adult participants, demonstrating immunity levels that closely resemble those of younger adult participants.

13.
Front Immunol ; 15: 1364774, 2024.
Article in English | MEDLINE | ID: mdl-38629075

ABSTRACT

Allergic asthma has emerged as a prevalent allergic disease worldwide, affecting most prominently both young individuals and lower-income populations in developing and developed countries. To devise effective and curative immunotherapy, it is crucial to comprehend the intricate nature of this condition, characterized by an immune response imbalance that favors a proinflammatory profile orchestrated by diverse subsets of immune cells. Although the involvement of Natural Killer T (NKT) cells in asthma pathology is frequently implied, their specific contributions to disease onset and progression remain incompletely understood. Given their remarkable ability to modulate the immune response through the rapid secretion of various cytokines, NKT cells represent a promising target for the development of effective immunotherapy against allergic asthma. This review provides a comprehensive summary of the current understanding of NKT cells in the context of allergic asthma, along with novel therapeutic approaches that leverage the functional response of these cells.


Subject(s)
Asthma , Hypersensitivity , Natural Killer T-Cells , Humans , Hypersensitivity/therapy , Cytokines , Immunotherapy
14.
Front Cell Infect Microbiol ; 14: 1297099, 2024.
Article in English | MEDLINE | ID: mdl-38495650

ABSTRACT

Introduction: Oral transmission of T. cruzi is probably the most frequent transmission mechanism in wild animals. This observation led to the hypothesis that consuming raw or undercooked meat from animals infected with T. cruzi may be responsible for transmitting the infection. Therefore, the general objective of this study was to investigate host-pathogen interactions between the parasite and gastric mucosa and the role of meat consumption from infected animals in the oral transmission of T. cruzi. Methods: Cell infectivity assays were performed on AGS cells in the presence or absence of mucin, and the roles of pepsin and acidic pH were determined. Moreover, groups of five female Balb/c mice were fed with muscle tissue obtained from mice in the acute phase of infection by the clone H510 C8C3hvir of T. cruzi, and the infection of the fed mice was monitored by a parasitemia curve. Similarly, we assessed the infective capacity of T. cruzi trypomastigotes and amastigotes by infecting groups of five mice Balb/c females, which were infected orally using a nasogastric probe, and the infection was monitored by a parasitemia curve. Finally, different trypomastigote and amastigote inoculums were used to determine their infective capacities. Adhesion assays of T. cruzi proteins to AGS stomach cells were performed, and the adhered proteins were detected by western blotting using monoclonal or polyclonal antibodies and by LC-MS/MS and bioinformatics analysis. Results: Trypomastigote migration in the presence of mucin was reduced by approximately 30%, whereas in the presence of mucin and pepsin at pH 3.5, only a small proportion of parasites were able to migrate (∼6%). Similarly, the ability of TCTs to infect AGS cells in the presence of mucin is reduced by approximately 20%. In all cases, 60-100% of the animals were fed meat from mice infected in the acute phase or infected with trypomastigotes or amastigotes developed high parasitemia, and 80% died around day 40 post-infection. The adhesion assay showed that cruzipain is a molecule of trypomastigotes and amastigotes that binds to AGS cells. LC-MS/MS and bioinformatics analysis, also confirmed that transialidase, cysteine proteinases, and gp63 may be involved in TCTs attachment or invasion of human stomach cells because they can potentially interact with different proteins in the human stomach mucosa. In addition, several human gastric mucins have cysteine protease cleavage sites. Discussion: Then, under our experimental conditions, consuming meat from infected animals in the acute phase allows the T. cruzi infection. Similarly, trypomastigotes and amastigotes could infect mice when administered orally, whereas cysteinyl proteinases and trans-sialidase appear to be relevant molecules in this infective process.


Subject(s)
Chagas Disease , Communicable Diseases , Trypanosoma cruzi , Female , Animals , Mice , Humans , Trypanosoma cruzi/metabolism , Pepsin A/metabolism , Parasitemia , Disease Models, Animal , Chromatography, Liquid , Tandem Mass Spectrometry , Chagas Disease/parasitology , Mucins
15.
Front Immunol ; 15: 1341600, 2024.
Article in English | MEDLINE | ID: mdl-38482000

ABSTRACT

The COVID-19 pandemic continues to cause severe global disruption, resulting in significant excess mortality, overwhelming healthcare systems, and imposing substantial social and economic burdens on nations. While most of the attention and therapeutic efforts have concentrated on the acute phase of the disease, a notable proportion of survivors experience persistent symptoms post-infection clearance. This diverse set of symptoms, loosely categorized as long COVID, presents a potential additional public health crisis. It is estimated that 1 in 5 COVID-19 survivors exhibit clinical manifestations consistent with long COVID. Despite this prevalence, the mechanisms and pathophysiology of long COVID remain poorly understood. Alarmingly, evidence suggests that a significant proportion of cases within this clinical condition develop debilitating or disabling symptoms. Hence, urgent priority should be given to further studies on this condition to equip global public health systems for its management. This review provides an overview of available information on this emerging clinical condition, focusing on the affected individuals' epidemiology, pathophysiological mechanisms, and immunological and inflammatory profiles.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , Pandemics , Kinetics , Persistent Infection
16.
Front Immunol ; 15: 1330209, 2024.
Article in English | MEDLINE | ID: mdl-38404579

ABSTRACT

Introduction: Respiratory infections are one of the leading causes of morbidity and mortality worldwide, mainly in children, immunocompromised people, and the elderly. Several respiratory viruses can induce intestinal inflammation and alterations in intestinal microbiota composition. Human metapneumovirus (HMPV) is one of the major respiratory viruses contributing to infant mortality in children under 5 years of age worldwide, and the effect of this infection at the gut level has not been studied. Methods: Here, we evaluated the distal effects of HMPV infection on intestinal microbiota and inflammation in a murine model, analyzing several post-infection times (days 1, 3, and 5). Six to eight-week-old C57BL/6 mice were infected intranasally with HMPV, and mice inoculated with a non-infectious supernatant (Mock) were used as a control group. Results: We did not detect HMPV viral load in the intestine, but we observed significant changes in the transcription of IFN-γ in the colon, analyzed by qPCR, at day 1 post-infection as compared to the control group. Furthermore, we analyzed the frequencies of different innate and adaptive immune cells in the colonic lamina propria, using flow cytometry. The frequency of monocyte populations was altered in the colon of HMPV -infected mice at days 1 and 3, with no significant difference from control mice at day 5 post-infection. Moreover, colonic CD8+ T cells and memory precursor effector CD8+ T cells were significantly increased in HMPV-infected mice at day 5, suggesting that HMPV may also alter intestinal adaptive immunity. Additionally, we did not find alterations in antimicrobial peptide expression, the frequency of colonic IgA+ plasma cells, and levels of fecal IgA. Some minor alterations in the fecal microbiota composition of HMPV -infected mice were detected using 16s rRNA sequencing. However, no significant differences were found in ß-diversity and relative abundance at the genus level. Discussion: To our knowledge, this is the first report describing the alterations in intestinal immunity following respiratory infection with HMPV infection. These effects do not seem to be mediated by direct viral infection in the intestinal tract. Our results indicate that HMPV can affect colonic innate and adaptive immunity but does not significantly alter the microbiota composition, and further research is required to understand the mechanisms inducing these distal effects in the intestine.


Subject(s)
Metapneumovirus , Paramyxoviridae Infections , Respiratory Tract Infections , Child , Mice , Humans , Animals , Child, Preschool , Aged , CD8-Positive T-Lymphocytes , RNA, Ribosomal, 16S , Mice, Inbred C57BL , Adaptive Immunity , Inflammation , Immunoglobulin A
17.
Brain Sci ; 14(1)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38248274

ABSTRACT

Central nervous system (CNS) pathologies are a public health concern, with viral infections one of their principal causes. These viruses are known as neurotropic pathogens, characterized by their ability to infiltrate the CNS and thus interact with various cell populations, inducing several diseases. The immune response elicited by neurotropic viruses in the CNS is commanded mainly by microglia, which, together with other local cells, can secrete inflammatory cytokines to fight the infection. The most relevant neurotropic viruses are adenovirus (AdV), cytomegalovirus (CMV), enterovirus (EV), Epstein-Barr Virus (EBV), herpes simplex virus type 1 (HSV-1), and herpes simplex virus type 2 (HSV-2), lymphocytic choriomeningitis virus (LCMV), and the newly discovered SARS-CoV-2. Several studies have associated a viral infection with systemic lupus erythematosus (SLE) and neuropsychiatric lupus (NPSLE) manifestations. This article will review the knowledge about viral infections, CNS pathologies, and the immune response against them. Also, it allows us to understand the relevance of the different viral proteins in developing neuronal pathologies, SLE and NPSLE.

18.
Antiviral Res ; 222: 105783, 2024 02.
Article in English | MEDLINE | ID: mdl-38145755

ABSTRACT

The human respiratory syncytial virus (hRSV) is the leading etiologic agent causing respiratory infections in infants, children, older adults, and patients with comorbidities. Sixty-seven years have passed since the discovery of hRSV, and only a few successful mitigation or treatment tools have been developed against this virus. One of these is immunotherapy with monoclonal antibodies against structural proteins of the virus, such as Palivizumab, the first prophylactic approach approved by the Food and Drug Administration (FDA) of the USA. In this article, we discuss different strategies for the prevention and treatment of hRSV infection, focusing on the molecular mechanisms against each target that underly the rational design of antibodies against hRSV. At the same time, we describe the latest results regarding currently approved therapies against hRSV and the challenges associated with developing new candidates.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Infant , Child , Humans , Aged , Antiviral Agents/therapeutic use , Palivizumab/therapeutic use , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/prevention & control , Antibodies, Monoclonal/therapeutic use
19.
Microb Genom ; 9(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38079200

ABSTRACT

The ICEKp258.2 genomic island (GI) has been proposed as an important factor for the emergence and success of the globally spread carbapenem-resistant Klebsiella pneumoniae sequence type (ST) 258. However, a characterization of this horizontally acquired element is lacking. Using bioinformatic and experimental approaches, we found that ICEKp258.2 is not confined to ST258 and ST512, but also carried by ST3795 strains and emergent invasive multidrug-resistant pathogens from ST1519. We also identified several ICEKp258.2-like GIs spread among different K. pneumoniae STs, other Klebsiella species and even other pathogen genera, uncovering horizontal gene transfer events between different STs and bacterial genera. Also, the comparative and phylogenetic analyses of the ICEKp258.2-like GIs revealed that the most closely related ICEKp258.2-like GIs were harboured by ST11 strains. Importantly, we found that subinhibitory concentrations of antibiotics used in treating K. pneumoniae infections can induce the excision of this GI and modulate its gene expression. Our findings provide the basis for the study of ICEKp258.2 and its role in the success of K. pneumoniae ST258. They also highlight the potential role of antibiotics in the spread of ICEKp258.2-like GIs among bacterial pathogens.


Subject(s)
Anti-Bacterial Agents , Klebsiella pneumoniae , Anti-Bacterial Agents/pharmacology , Phylogeny , Genomic Islands/genetics , Carbapenems/pharmacology
20.
Front Microbiol ; 14: 1236458, 2023.
Article in English | MEDLINE | ID: mdl-38029095

ABSTRACT

Excisable genomic islands (EGIs) are horizontally acquired genetic elements that harbor an array of genes with diverse functions. ROD21 is an EGI found integrated in the chromosome of Salmonella enterica serovar Enteritidis (Salmonella ser. Enteritidis). While this island is known to be involved in the capacity of Salmonella ser. Enteritidis to cross the epithelial barrier and colonize sterile organs, the role of most ROD21 genes remains unknown, and thus, the identification of their function is fundamental to understanding the impact of this EGI on bacterium pathogenicity. Therefore, in this study, we used a bioinformatical approach to evaluate the function of ROD21-encoded genes and delve into the characterization of SEN1990, a gene encoding a putative DNA-binding protein. We characterized the predicted structure of SEN1990, finding that this protein contains a three-stranded winged helix-turn-helix (wHTH) DNA-binding domain. Additionally, we identified homologs of SEN1990 among other members of the EARL EGIs. Furthermore, we deleted SEN1990 in Salmonella ser. Enteritidis, finding no differences in the replication or maintenance of the excised ROD21, contrary to what the previous Refseq annotation of the protein suggests. High-throughput RNA sequencing was carried out to evaluate the effect of the absence of SEN1990 on the bacterium's global transcription. We found a downregulated expression of oafB, an SPI-17-encoded acetyltransferase involved in O-antigen modification, which was restored when the deletion mutant was complemented ectopically. Additionally, we found that strains lacking SEN1990 had a reduced capacity to colonize sterile organs in mice. Our findings suggest that SEN1990 encodes a wHTH domain-containing protein that modulates the transcription of oafB from the SPI-17, implying a crosstalk between these pathogenicity islands and a possible new role of ROD21 in the pathogenesis of Salmonella ser. Enteritidis.

SELECTION OF CITATIONS
SEARCH DETAIL