Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Basic Res Cardiol ; 117(1): 48, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36205817

ABSTRACT

Although p38 MAP Kinase α (p38 MAPKα) is generally accepted to play a central role in the cardiac stress response, to date its function in maladaptive cardiac hypertrophy is still not unambiguously defined. To induce a pathological type of cardiac hypertrophy we infused angiotensin II (AngII) for 2 days via osmotic mini pumps in control and tamoxifen-inducible, cardiomyocyte (CM)-specific p38 MAPKα KO mice (iCMp38αKO) and assessed cardiac function by echocardiography, complemented by transcriptomic, histological, and immune cell analysis. AngII treatment after inactivation of p38 MAPKα in CM results in left ventricular (LV) dilatation within 48 h (EDV: BL: 83.8 ± 22.5 µl, 48 h AngII: 109.7 ± 14.6 µl) and an ectopic lipid deposition in cardiomyocytes, reflecting a metabolic dysfunction in pressure overload (PO). This was accompanied by a concerted downregulation of transcripts for oxidative phosphorylation, TCA cycle, and fatty acid metabolism. Cardiac inflammation involving neutrophils, macrophages, B- and T-cells was significantly enhanced. Inhibition of adipose tissue lipolysis by the small molecule inhibitor of adipocytetriglyceride lipase (ATGL) Atglistatin reduced cardiac lipid accumulation by 70% and neutrophil infiltration by 30% and went along with an improved cardiac function. Direct targeting of neutrophils by means of anti Ly6G-antibody administration in vivo led to a reduced LV dilation in iCMp38αKO mice and an improved systolic function (EF: 39.27 ± 14%). Thus, adipose tissue lipolysis and CM lipid accumulation augmented cardiac inflammation in iCMp38αKO mice. Neutrophils, in particular, triggered the rapid left ventricular dilatation. We provide the first evidence that p38 MAPKα acts as an essential switch in cardiac adaptation to PO by mitigating metabolic dysfunction and inflammation. Moreover, we identified a heart-adipose tissue-immune cell crosstalk, which might serve as new therapeutic target in cardiac pathologies.


Subject(s)
Heart Failure , Myocytes, Cardiac , Adipose Tissue/metabolism , Angiotensin II/metabolism , Animals , Cardiomegaly/metabolism , Fatty Acids/metabolism , Inflammation/metabolism , Lipase/metabolism , Lipase/therapeutic use , Lipids/therapeutic use , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Neutrophils/metabolism , Tamoxifen/metabolism , Tamoxifen/therapeutic use , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/therapeutic use
2.
EMBO J ; 37(10)2018 05 15.
Article in English | MEDLINE | ID: mdl-29650680

ABSTRACT

Ciliopathies are life-threatening human diseases caused by defective cilia. They can often be traced back to mutations of genes encoding transition zone (TZ) proteins demonstrating that the understanding of TZ organisation is of paramount importance. The TZ consists of multimeric protein modules that are subject to a stringent assembly hierarchy. Previous reports place Rpgrip1l at the top of the TZ assembly hierarchy in Caenorhabditis elegans By performing quantitative immunofluorescence studies in RPGRIP1L-/- mouse embryos and human embryonic cells, we recognise a different situation in vertebrates in which Rpgrip1l deficiency affects TZ assembly in a cell type-specific manner. In cell types in which the loss of Rpgrip1l alone does not affect all modules, additional truncation or removal of vertebrate-specific Rpgrip1 results in an impairment of all modules. Consequently, Rpgrip1l and Rpgrip1 synergistically ensure the TZ composition in several vertebrate cell types, revealing a higher complexity of TZ assembly in vertebrates than in invertebrates.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/physiology , Cilia/physiology , Embryo, Mammalian/metabolism , Fibroblasts/metabolism , Proteins/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , Antigens, Neoplasm , Carrier Proteins/physiology , Cell Cycle Proteins , Cell Membrane Structures , Cells, Cultured , Cytoskeletal Proteins , Embryo, Mammalian/cytology , Fibroblasts/cytology , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/physiology , Transcription Factors/physiology
SELECTION OF CITATIONS
SEARCH DETAIL