Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981743

ABSTRACT

Numerous vaccine candidates have emerged in the fight against SARS-CoV-2, yet the challenges posed by viral evolution and the evasion of vaccine-induced immunity persist. The development of broadly protective vaccines is essential in countering the threat posed by variants of concern (VoC) capable of eluding existing vaccine defenses. Among the diverse SARS-CoV-2 vaccine candidates, detailed characterization of those based on the expression of the entire spike protein in mammalian cells have been limited. In our study, we engineered a recombinant prefusion-stabilized trimeric spike protein antigen, IMT-CVAX, encoded by the IMT-C20 gene. This antigen was expressed utilizing a suspension mammalian cell line (CHO-S). The establishment of a stable cell line expressing IMT-CVAX involved the integration of the gene into the CHO genome, followed by the expression, purification, and characterization of the protein. To gauge the vaccine potential of adjuvanted IMT-CVAX, we conducted assessments in small animals. Analyses of blood collected from immunized animals included measurements of anti-spike IgG, SARS-CoV-2 neutralization, and responses from GC-B and Tfh cells. Furthermore, the protective efficacy of IMT-CVAX was evaluated using a Hamster challenge model. Our findings indicate that adjuvanted IMT-CVAX elicits an excellent immune response in both mice and hamsters. Notably, sera from animals immunized with IMT-CVAX effectively neutralize a diverse range of SARS-CoV-2 variants. Moreover, IMT-CVAX immunization conferred complete protection to hamsters against SARS-CoV-2 infection. In hACE2 transgenic mice, IMT-CVAX vaccination induced a robust response from GC-B and Tfh cells. Based on our preclinical model assessments, adjuvanted IMT-CVAX emerges as a highly efficacious vaccine candidate. This protein-subunit-based vaccine exhibits promise for clinical development, offering an affordable solution for both primary and heterologous immunization against SARS-CoV-2 variants.

2.
Int J Biol Macromol ; 253(Pt 3): 126803, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37689286

ABSTRACT

The present study reports the structural and functional characterization of a new glutaminase-free recombinant L-asparaginase (PrASNase) from Pseudomonas resinovorans IGS-131. PrASNase showed substrate specificity to L-asparagine, and its kinetic parameters, Km, Vmax, and kcat were 9.49 × 10-3 M, 25.13 IUmL-1 min-1, and 3.01 × 103 s-1, respectively. The CD spectra showed that PrASNase consisted of 18.5 % helix, 21.5 % antiparallel sheets, 4.2 % parallel sheets, 14 % turns, and rest other structures. FTIR was used for the functional characterization, and molecular docking predicted that the substrate interacts with serine, alanine, and glutamine in the binding pocket of PrASNase. Differing from known asparaginases, structural characterization by small-angle X-ray scattering (SAXS) and analytical ultracentrifugation (AUC) unambiguously revealed PrASNase to exist as a monomer in solution at low temperatures and oligomerized to a higher state with temperature rise. Through SAXS studies and enzyme assay, PrASNase was found to be mostly monomer and catalytically active at 37 °C. Furthermore, this glutaminase-free PrASNase showed killing effects against WIL2-S and TF-1.28 cells with IC50 of 7.4 µg.mL-1 and 5.6 µg.mL-1, respectively. This is probably the first report with significant findings of fully active L-asparaginase in monomeric form using SAXS and AUC and demonstrated the potential of PrASNase in inhibiting cancerous cells, making it a potential therapeutic candidate.


Subject(s)
Asparaginase , Asparagine , Asparaginase/chemistry , Molecular Docking Simulation , Scattering, Small Angle , X-Ray Diffraction , Asparagine/chemistry
3.
Artif Cells Nanomed Biotechnol ; 50(1): 17-28, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35109731

ABSTRACT

Epidermal growth factor receptor (EGFR) is the primary target for the treatment of colorectal cancer, the third most diagnosed cancer worldwide. In recent years, regulatory changes have facilitated the approval of biosimilars aimed to bring more access to biologics to patients. However, it has also expended the requirements of non-clinical characterisation data using state-of-the-art and orthogonal methodologies to demonstrate similarity between proposed biologic and its reference medicinal product (RMP). The current study was aimed to develop a stable CHO-S cell line producing panitumumab biosimilar candidate, P-mAb, a fully human IgG2 anti-EGFR monoclonal antibody and assess its physicochemical and functional similarity with RMP, Vectibix. The single-cell clone from stably transfected CHO-S cell pools was used for the production of P-mAb. This was followed by purification and comparative physicochemical and biological characterisation of P-mAb and RMP using SDS-PAGE, LC/MS, MALDI, MS/MS, CD spectrometry, DSF, SAXS, ITF, MTT assay and binding affinity. SAXS and MST assays are being used for first time in biosimilarity analysis of therapeutic monoclonal antibody. The results of structural and functional analysis of anti-EGFR P-mAb, produced by stable CHO-S cell line revealed high similarity between P-mAb and RMP, vectibix, thus providing the scientific basis of its potential for therapeutic applications.


Subject(s)
Biosimilar Pharmaceuticals , Animals , Antibodies, Monoclonal/pharmacology , Biosimilar Pharmaceuticals/analysis , Biosimilar Pharmaceuticals/chemistry , Biosimilar Pharmaceuticals/pharmacology , CHO Cells , Cricetinae , Humans , Scattering, Small Angle , Tandem Mass Spectrometry , X-Ray Diffraction
4.
FEBS J ; 289(16): 4935-4962, 2022 08.
Article in English | MEDLINE | ID: mdl-35092154

ABSTRACT

The artemisinin-resistant mutations in Plasmodium falciparum (PfKelch13) identified worldwide are mostly confined to the Broad-complex, tramtrack and bric-à-brac/poxvirus and zinc-finger (BTB/POZ) and Kelch-repeat propeller (KRP) domains. To date, only two crystal structures of the BTB/POZ-KRP domains as tight dimers are available, which limits structure-based predictions and interpretation of its role(s) in inducing clinical artemisinin resistance. Our solution Small-Angle X-ray Scattering (SAXS) data analysis and shape restoration brought forth that: (a) PfKelch13 forms a stable hexamer in P6 symmetry, (b) interactions of the N-termini drive the hexameric assembly, and (c) the six KRP domains project independently in space, forming a cauldron-like architecture. We further deduce that the artemisinin-sensitive mutant A578S is packed like the wild-type protein, however, hexameric assemblies of the predominant artemisinin-resistant mutants R539T and C580Y displayed detectable differences in the spatial positioning of their BTB/POZ-KRP domains. Lastly, mapping of mutations known to enable artemisinin resistance suggested evolutionary pressure in the selection for mutations in the BTB/POZ-KRP domains. These mutations appear non-detrimental to the hexameric assembly of proteins, and yet somehow alter the flux of downstream events essential for the susceptibility to artemisinin.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Drug Resistance/genetics , Humans , Malaria, Falciparum/drug therapy , Mutation , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Scattering, Small Angle , X-Ray Diffraction
5.
Int J Biol Macromol ; 188: 1012-1024, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34375665

ABSTRACT

The oxygenases have attracted considerable attention in enzyme-mediated bioremediation of xenobiotic compounds due to their high specificity, cost-effectiveness, and targeted field applications. Here, we performed a functional metagenomics approach to cope with culturability limitations to isolate a novel extradiol dioxygenase. Fosmid clone harboring dioxygenase gene was sequenced and analyzed by bioinformatics tools. One ring-cleaving dioxygenase RW4-MPC (metapyrocatechase) was purified and characterized to examine its degradation efficiency. The RW4-MPC was significantly active in the temperature and pH range of 5 to 40 °C, and 7-10, respectively, with an optimum temperature of 25 °C and pH 8. To gain insight into observed differential activity, Small-Angle X-ray Scattering (SAXS) data of the protein samples were analyzed, which brought forth that the RW4-MPC molecules form tight globular tetramers in solution. This native association was stable till 35 °C, and protein started to associate at higher temperatures, explaining heat-induced loss of function. Similarly, RW4-MPC aggregated or lost globular profile below pH 7 or at pH 10, respectively. The kinetic parameters showed the six folds high catalytic efficiency of RW4-MPC towards 2,3-dihydroxy biphenyl than catechol and its derivatives. RW4-MPC molecules showed remarkable retention of functionality in hypersaline conditions with more than 70% activity in a buffer having 3 M NaCl concentration. In concordance, SAXS data analysis showed retention of functional shape profile in hypersaline conditions. The halotolerant and oxygen insensitive nature of this enzyme makes it a potential candidate for bioremediation.


Subject(s)
Catechol 2,3-Dioxygenase/chemistry , Catechol 2,3-Dioxygenase/metabolism , Metagenomics , Scattering, Small Angle , X-Ray Diffraction , Amino Acid Sequence , Catechol 2,3-Dioxygenase/isolation & purification , Circular Dichroism , Clone Cells , Enzyme Stability/drug effects , Hydrogen-Ion Concentration , Ions , Kinetics , Metals/pharmacology , Molecular Weight , Phylogeny , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sodium Chloride/pharmacology , Substrate Specificity/drug effects , Temperature
6.
J Biol Chem ; 296: 100308, 2021.
Article in English | MEDLINE | ID: mdl-33493516

ABSTRACT

The δ-proteobacteria Myxococcus xanthus displays social (S) and adventurous (A) motilities, which require pole-to-pole reversal of the motility regulator proteins. Mutual gliding motility protein C (MglC), a paralog of GTPase-activating protein Mutual gliding motility protein B (MglB), is a member of the polarity module involved in regulating motility. However, little is known about the structure and function of MglC. Here, we determined ∼1.85 Å resolution crystal structure of MglC using Selenomethionine Single-wavelength anomalous diffraction. The crystal structure revealed that, despite sharing <9% sequence identity, both MglB and MglC adopt a Regulatory Light Chain 7 family fold. However, MglC has a distinct ∼30° to 40° shift in the orientation of the functionally important α2 helix compared with other structural homologs. Using isothermal titration calorimetry and size-exclusion chromatography, we show that MglC binds MglB in 2:4 stoichiometry with submicromolar range dissociation constant. Using small-angle X-ray scattering and molecular docking studies, we show that the MglBC complex consists of a MglC homodimer sandwiched between two homodimers of MglB. A combination of size-exclusion chromatography and site-directed mutagenesis studies confirmed the MglBC interacting interface obtained by molecular docking studies. Finally, we show that the C-terminal region of MglB, crucial for binding its established partner MglA, is not required for binding MglC. These studies suggest that the MglB uses distinct interfaces to bind MglA and MglC. Based on these data, we propose a model suggesting a new role for MglC in polarity reversal in M. xanthus.


Subject(s)
Bacterial Proteins/chemistry , Cell Polarity/genetics , Molecular Motor Proteins/chemistry , Myxococcus xanthus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Kinetics , Molecular Docking Simulation , Molecular Motor Proteins/genetics , Molecular Motor Proteins/metabolism , Mutation , Myxococcus xanthus/genetics , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...