ABSTRACT
Overexpression of human epidermal growth factor receptor-2 (HER-2) occurs in 20% of all breast cancer subtypes, especially those that present the worst prognostic outcome through a very invasive and aggressive tumour. HCC-1954 (HER-2+) is a highly invasive, metastatic cell line, whereas MCF-7 is mildly aggressive and non-invasive. We investigated membrane proteins from both cell lines that could have a pivotal biological significance in metastasis. Membrane protein enrichment for HCC-1954 and MCF-7 proteomic analysis was performed. The samples were analysed and quantified by mass spectrometry. High abundance membrane proteins were confirmed by Western blot, immunofluorescence, and flow cytometry. Protein interaction prediction and correlations with the Cancer Genome Atlas (TCGA) patient data were conducted by bioinformatic analysis. In addition, ß1 integrin expression was analysed by Western blot in cells upon trastuzumab treatment. The comparison between HCC-1954 and MCF-7 membrane-enriched proteins revealed that proteins involved in cytoskeleton organisation, such as HER-2, αv and ß1 integrins, E-cadherin, and CD166 were more abundant in HCC-1954. ß1 integrin membrane expression was higher in the HCC-1954 cell line resistant after trastuzumab treatment. TCGA data analysis showed a trend toward a positive correlation between HER-2 and ß1 integrin in HER-2+ breast cancer patients. Differences in protein profile and abundance reflected distinctive capabilities for aggressiveness and invasiveness between HCC-1954 and MCF-7 cell line phenotypes. The higher membrane ß1 integrin expression after trastuzumab treatment in the HCC-1954 cell line emphasised the need for investigating the contribution of ß1 integrin modulation and its effect on the mechanism of trastuzumab resistance.
Subject(s)
Breast Neoplasms , Carcinoma, Hepatocellular , Liver Neoplasms , Breast Neoplasms/metabolism , Cadherins/genetics , Cell Line, Tumor , Female , Humans , Integrin beta1/genetics , Integrin beta1/metabolism , MCF-7 Cells , Proteomics , Trastuzumab/pharmacology , Trastuzumab/therapeutic useABSTRACT
BACKGROUND: The inappropriate use of antibiotics has led to the accelerated growth of resistance to antibiotics. The search for new therapeutic strategies (i.e., antimicrobial peptides-AMPs) has thus become a pressing need. OBJECTIVE: Characterising and evaluating Sarconesiopsis magellanica larval fat body-derived AMPs. METHODS: Fat body extracts were analysed by reversed-phase high-performance liquid chromatography (RP-HPLC); mass spectrometry was used for characterising the primary structure of the AMPs so found. ProtParam (Expasy) was used for analysing the AMPs' physico-chemical properties. Synthetic AMPs' antibacterial activity was evaluated. FINDINGS: Four new AMPs were obtained and called sarconesin III, IV, V and VI. Sarconesin III had an α-helix structure and sarconesins IV, V and VI had linear formations. Oligomer prediction highlighted peptide-peptide interactions, suggesting that sarconesins III, V and VI could form self-aggregations when in contact with the microbial membrane. AMPs synthesised from their native molecules' sequences had potent activity against Gram-positive bacteria and, to a lesser extent, against Gram-negative and drug-resistant bacteria. Sarconesin VI was the most efficient AMP. None of the four synthetic AMPs had a cytotoxic effect. MAIN CONCLUSIONS: S. magellanica larval fat body-derived antimicrobial peptides are an important source of AMPs and could be used in different antimicrobial therapies and overcoming bacterial resistance.
Subject(s)
Diptera , Animals , Anti-Bacterial Agents/pharmacology , Calliphoridae , Fat Body , Larva , Microbial Sensitivity Tests , Pore Forming Cytotoxic ProteinsABSTRACT
BACKGROUND The inappropriate use of antibiotics has led to the accelerated growth of resistance to antibiotics. The search for new therapeutic strategies (i.e., antimicrobial peptides-AMPs) has thus become a pressing need. OBJECTIVE Characterising and evaluating Sarconesiopsis magellanica larval fat body-derived AMPs. METHODS Fat body extracts were analysed by reversed-phase high-performance liquid chromatography (RP-HPLC); mass spectrometry was used for characterising the primary structure of the AMPs so found. ProtParam (Expasy) was used for analysing the AMPs’ physico-chemical properties. Synthetic AMPs’ antibacterial activity was evaluated. FINDINGS Four new AMPs were obtained and called sarconesin III, IV, V and VI. Sarconesin III had an α-helix structure and sarconesins IV, V and VI had linear formations. Oligomer prediction highlighted peptide-peptide interactions, suggesting that sarconesins III, V and VI could form self-aggregations when in contact with the microbial membrane. AMPs synthesised from their native molecules’ sequences had potent activity against Gram-positive bacteria and, to a lesser extent, against Gram-negative and drug-resistant bacteria. Sarconesin VI was the most efficient AMP. None of the four synthetic AMPs had a cytotoxic effect. MAIN CONCLUSIONS S. magellanica larval fat body-derived antimicrobial peptides are an important source of AMPs and could be used in different antimicrobial therapies and overcoming bacterial resistance
ABSTRACT
Surface-associated proteins from Mycobacterium bovis BCG Moreau RDJ are important components of the live Brazilian vaccine against tuberculosis. They are important targets during initial BCG vaccine stimulation and modulation of the host's immune response, especially in the bacterial-host interaction. These proteins might also be involved in cellular communication, chemical response to the environment, pathogenesis processes through mobility, colonization, and adherence to the host cell, therefore performing multiple functions. In this study, the proteomic profile of the surface-associated proteins from M. bovis BCG Moreau was compared to the BCG Pasteur reference strain. The methodology used was 2DE gel electrophoresis combined with mass spectrometry techniques (MALDI-TOF/TOF), leading to the identification of 115 proteins. Of these, 24 proteins showed differential expression between the two BCG strains. Furthermore, 27 proteins previously described as displaying moonlighting function were identified, 8 of these proteins showed variation in abundance comparing BCG Moreau to Pasteur and 2 of them presented two different domain hits. Moonlighting proteins are multifunctional proteins in which two or more biological functions are fulfilled by a single polypeptide chain. Therefore, the identification of such proteins with moonlighting predicted functions can contribute to a better understanding of the molecular mechanisms unleashed by live BCG Moreau RDJ vaccine components.
Subject(s)
BCG Vaccine/immunology , Membrane Proteins/immunology , Mycobacterium bovis/immunology , Transcriptome/immunology , Brazil , Gene Expression Profiling , Humans , Proteomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Transcriptome/genetics , Tuberculosis/immunology , Tuberculosis/prevention & controlABSTRACT
The taeniasis/cysticercosis complex is a zoonosis caused by the presence of the parasite Taenia solium in humans. It is considered a neglected disease that causes serious public health and economic problems in developing countries. In humans, the most common locations for the larval form are the skeletal muscles, ocular system, and the central nervous system, which is the most clinically important. Several glycoproteins of T. solium and Taenia crassiceps cysticerci have been characterized and studied for their use in the immunodiagnosis of neurocysticercosis and/or the development of synthetic or recombinant vaccines against cysticercosis. The aim of this study was to perform a gel-free shotgun proteomic analysis to identify saline vesicular extract (SVE) proteins of T. solium and T. crassiceps cysticerci. After solubilization of the SVE with and without surfactant reagent and in-solution digestion, the proteins were analyzed by LC-MS/MS. Use of a surfactant resulted in a significantly higher number of proteins that were able to be identified by LC-MS/MS. Novel proteins were identified in T. solium and T. crassiceps SVE. The qualitative analysis revealed a total of 79 proteins in the Taenia species: 29 in T. solium alone, 11 in T. crassiceps alone, and 39 in both. These results are an important contribution to support future investigations and for establishing a Taenia proteomic profile to study candidate biomarkers involved in the diagnosis or pathogenesis of neurocysticercosis.
Subject(s)
Cell Extracts/analysis , Cysticercus/metabolism , Proteome/analysis , Protozoan Proteins/analysis , Protozoan Proteins/immunology , Taenia solium/metabolism , Animals , Antigens, Helminth , Central Nervous System/parasitology , Chromatography, Liquid , Cysticercus/genetics , Cysticercus/immunology , Developing Countries , Gene Expression Profiling , Humans , Larva/metabolism , Muscle, Skeletal/parasitology , Neglected Diseases/parasitology , Neurocysticercosis/diagnosis , Neurocysticercosis/parasitology , Proteomics , Public Health , Taenia solium/genetics , Taenia solium/immunology , Taeniasis/diagnosis , Taeniasis/parasitology , Zoonoses/parasitologyABSTRACT
Replication of Trypanosoma cruzi, the etiological agent of Chagas disease, displays peculiar features, such as absence of chromosome condensation and closed mitosis. Although previous proteome and subproteome analyses of T. cruzi have been carried out, the nuclear subproteome of this protozoan has not been described. Here, we report, for the first time to the best of our knowledge, the isolation and proteome analysis of T. cruzi nuclear fraction. For that, T. cruzi epimastigote cells were lysed and subjected to cell fractionation using two steps of sucrose density gradient centrifugation. The purity of the nuclear fraction was confirmed by phase contrast and fluorescence microscopy. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) allowed the identification of 864 proteins. Among those, 272 proteins were annotated as putative uncharacterized, and 275 had not been previously reported on global T. cruzi proteome analysis. Additionally, to support our enrichment method, bioinformatics analysis in DAVID was carried out. It grouped the nuclear proteins in 65 gene clusters, wherein the clusters with the highest enrichment scores harbor members with chromatin organization and DNA binding functions.
Subject(s)
Cell Nucleus/metabolism , Proteome/metabolism , Protozoan Proteins/metabolism , Trypanosoma cruzi/metabolism , Cell Nucleus/genetics , Protozoan Proteins/genetics , Tandem Mass Spectrometry , Trypanosoma cruzi/geneticsABSTRACT
We have developed a cell disruption method to produce a protein extract using Trypanosoma cruzi cells based on a straightforward hypoosmotic lysis protocol. The procedure consists of three steps: incubation of the cells in a hypoosmotic lysis buffer, sonication in a water bath, and centrifugation. The final protein extract was designated TcS12. The stages of cell disruption at different incubation times were monitored by differential interference contrast microscopy. After 30min of incubation in lysis buffer at 4°C, the T. cruzi epimastigote forms changed from slender to round-shaped parasites. Nevertheless, cell disruption took place following sonication of the sample for 30min. The efficiency of the methodology was also validated by flow cytometry, which resulted in 72% of propidium iodide (PI)-labeled cells. To estimate the protein extraction yield and the differential protein expression, the proteomics profile of four T. cruzi strains (CL-Brener, Dm28c, Y, and 4167) were analyzed by liquid chromatography tandem mass spectrometry (LCMS/MS) on a SYNAPT HDMS system using the label-free MS(E) approach. ProteinLynx Global Server (version 2.5) with Expression(E) analysis identified a total of 1153 proteins and revealed 428 differentially expressed proteins among the strains. Gene ontology analysis showed that not only cytosolic proteins but also nuclear and organellar ones were present in the extract.
Subject(s)
Chromatography, High Pressure Liquid , Proteome/analysis , Proteomics , Tandem Mass Spectrometry , Trypanosoma cruzi/metabolism , Flow Cytometry , Microscopy, Interference , Osmotic Pressure , Propidium/chemistry , Protozoan Proteins/isolation & purification , Protozoan Proteins/metabolism , SonicationABSTRACT
Pseudallescheria boydii is a filamentous fungus that causes a wide array of infections that can affect practically all the organs of the human body. The treatment of pseudallescheriosis is difficult since P. boydii exhibits intrinsic resistance to the majority of antifungal drugs used in the clinic and the virulence attributes expressed by this fungus are unknown. The study of the secretion of molecules is an important approach for understanding the pathogenicity of fungi. With this task in mind, we have shown that mycelial cells of P. boydii were able to actively secrete proteins into the extracellular environment; some of them were recognized by antibodies present in the serum of a patient with pseudallescheriosis. Additionally, molecules secreted by P. boydii induced in vitro irreversible damage in pulmonary epithelial cells. Subsequently, two-dimensional gel electrophoresis combined with mass spectrometry was carried out in order to start the construction of a map of secreted proteins from P. boydii mycelial cells. The two-dimensional map showed that most of the proteins (around 100 spots) were focused at pH ranging from 4 to 7 with molecular masses ranging from 14 to >117 kDa. Fifty spots were randomly selected, of which 30 (60%) were consistently identified, while 20 (40%) spots generated peptides that showed no resemblance to any known protein from other fungi and/or MS with low quality. Notably, we identified proteins involved in metabolic pathways (energy/carbohydrate, nucleotide, and fatty acid), cell wall remodeling, RNA processing, signaling, protein degradation/nutrition, translation machinery, drug elimination and/or detoxification, protection against environmental stress, cytoskeleton/movement proteins, and immunogenic molecules. Since the genome of this fungus is not sequenced, we performed enzymatic and immunodetection assays in order to corroborate the presence of some released proteins. The identification of proteins actively secreted by P. boydii provides important new information for understanding immune modulation and provides important new perspectives on the biology of this intriguing fungus.