Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Breast Cancer ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003386

ABSTRACT

BACKGROUND: Tailored, preventive cancer care requires the identification of pathogenic germline variants (PGVs) among potentially at-risk blood relatives (BRs). Cascade testing is carried out for BRs of probands who are positive for PGVs of an inherited cancer but not for negative probands. This study was conducted to examine the prevalence of PGVs for BRs of PGV-negative probands. METHODS: PGV prevalence was assessed for 682 BRs of 281 probands with BRCA1/BRCA2 wild-type hereditary breast and ovarian cancer (HBOC) syndrome. RESULTS: PGVs were discovered in 22 (45.8%) of the 48 BRs of the PGV-positive probands and in 14 (2.2%) of 634 BRs of the PGV-negative probands. Eleven PGVs on high-risk BRCA1, BRCA2, and TP53 genes were present only in BRs and not in the probands (probands vs BRs in Fisher exact test; p = 0.0104; odds ratio [OR] = 0.000 [0.000-0.5489 of 95% confidence interval]), partly due to the nature of the selection criteria. The enrichment of high-risk PGVs among BRs was also significant as compared with a non-cancer East Asian population (p = 0.0016; OR = 3.0791 [1.5521-5.6694]). PGV prevalence, risk class of gene, and genotype concordance were unaffected by the cancer history among BRs. CONCLUSION: These findings imply the necessity to construct a novel testing scheme to complement cascade testing.

2.
J Pathol ; 263(3): 275-287, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734880

ABSTRACT

The hyperplasia-carcinoma sequence is a stepwise tumourigenic programme towards endometrial cancer in which normal endometrial epithelium becomes neoplastic through non-atypical endometrial hyperplasia (NAEH) and atypical endometrial hyperplasia (AEH), under the influence of unopposed oestrogen. NAEH and AEH are known to exhibit polyclonal and monoclonal cell growth, respectively; yet, aside from focal PTEN protein loss, the genetic and epigenetic alterations that occur during the cellular transition remain largely unknown. We sought to explore the potential molecular mechanisms that promote the NAEH-AEH transition and identify molecular markers that could help to differentiate between these two states. We conducted target-panel sequencing on the coding exons of 596 genes, including 96 endometrial cancer driver genes, and DNA methylome microarrays for 48 NAEH and 44 AEH lesions that were separately collected via macro- or micro-dissection from the endometrial tissues of 30 cases. Sequencing analyses revealed acquisition of the PTEN mutation and the clonal expansion of tumour cells in AEH samples. Further, across the transition, alterations to the DNA methylome were characterised by hypermethylation of promoter/enhancer regions and CpG islands, as well as hypo- and hyper-methylation of DNA-binding regions for transcription factors relevant to endometrial cell differentiation and/or tumourigenesis, including FOXA2, SOX17, and HAND2. The identified DNA methylation signature distinguishing NAEH and AEH lesions was reproducible in a validation cohort with modest discriminative capability. These findings not only support the concept that the transition from NAEH to AEH is an essential step within neoplastic cell transformation of endometrial epithelium but also provide deep insight into the molecular mechanism of the tumourigenic programme. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Carcinoma, Endometrioid , DNA Methylation , Endometrial Hyperplasia , Endometrial Neoplasms , Epigenesis, Genetic , PTEN Phosphohydrolase , Female , Humans , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Carcinoma, Endometrioid/genetics , Carcinoma, Endometrioid/pathology , PTEN Phosphohydrolase/genetics , Endometrial Hyperplasia/genetics , Endometrial Hyperplasia/pathology , Endometrial Hyperplasia/metabolism , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Mutation , Gene Expression Regulation, Neoplastic , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CpG Islands/genetics , Aged
3.
JAMA Netw Open ; 6(1): e2252140, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36662520

ABSTRACT

Importance: Neoadjuvant chemoradiotherapy (CRT) is the standard of care for advanced rectal cancer. Yet, estimating response to CRT remains an unmet clinical challenge. Objective: To investigate and better understand the transcriptomic factors associated with response to neoadjuvant CRT and survival in patients with advanced rectal cancer. Design, Setting, and Participants: A single-center, retrospective, case series was conducted at a comprehensive cancer center. Pretreatment biopsies from 298 patients with rectal cancer who were later treated with neoadjuvant CRT between April 1, 2004, and September 30, 2020, were analyzed by RNA sequencing. Data analysis was performed from July 1, 2021, to May 31, 2022. Exposures: Chemoradiotherapy followed by total mesorectal excision or watch-and-wait management. Main Outcomes and Measures: Transcriptional subtyping was performed by consensus molecular subtype (CMS) classification. Immune cell infiltration was assessed using microenvironment cell populations-counter (MCP-counter) scores and single-sample gene set enrichment analysis (ssGSEA). Patients with surgical specimens of tumor regression grade 3 to 4 or whose care was managed by the watch-and-wait approach for more than 3 years were defined as good responders. Results: Of the 298 patients in the study, 205 patients (68.8%) were men, and the median age was 61 (IQR, 52-67) years. Patients classified as CMS1 (6.4%) had a significantly higher rate of good response, albeit survival was comparable among the 4 subtypes. Good responders exhibited an enrichment in various immune-related pathways, as determined by ssGSEA. Microenvironment cell populations-counter scores for cytotoxic lymphocytes were significantly higher for good responders than nonresponders (median, 0.76 [IQR, 0.53-1.01] vs 0.58 [IQR, 0.43-0.83]; P < .001). Cytotoxic lymphocyte MCP-counter score was independently associated with response to CRT, as determined in the multivariable analysis (odds ratio, 3.81; 95% CI, 1.82-7.97; P < .001). Multivariable Cox proportional hazards regression analysis, including postoperative pathologic factors, revealed the cytotoxic lymphocyte MCP-counter score to be independently associated with recurrence-free survival (hazard ratio [HR], 0.38; 95% CI, 0.16-0.92; P = .03) and overall survival (HR, 0.16; 95% CI, 0.03-0.83; P = .03). Conclusions and Relevance: In this case series of patients with rectal cancer treated with neoadjuvant CRT, the cytotoxic lymphocyte score in pretreatment biopsy samples, as computed by RNA sequencing, was associated with response to CRT and survival. This finding suggests that the cytotoxic lymphocyte score might serve as a biomarker in personalized multimodal rectal cancer treatment.


Subject(s)
Antineoplastic Agents , Rectal Neoplasms , Male , Humans , Middle Aged , Female , Neoadjuvant Therapy , Treatment Outcome , Retrospective Studies , Transcriptome , Rectal Neoplasms/genetics , Rectal Neoplasms/therapy , Rectal Neoplasms/pathology , Biopsy , Tumor Microenvironment/genetics
4.
J Pathol ; 258(3): 300-311, 2022 11.
Article in English | MEDLINE | ID: mdl-36111561

ABSTRACT

Helicobacter pylori (HP) is a major etiologic driver of diffuse-type gastric cancer (DGC). However, improvements in hygiene have led to an increase in the prevalence of HP-naïve DGC; that is, DGC that occurs independent of HP. Although multiple genomic cohort studies for gastric cancer have been conducted, including studies for DGC, distinctive genomic differences between HP-exposed and HP-naïve DGC remain largely unknown. Here, we employed exome and RNA sequencing with immunohistochemical analyses to perform binary comparisons between 36 HP-exposed and 27 HP-naïve DGCs from sporadic, early-stage, and intramucosal or submucosal tumor samples. Among the samples, 33 HP-exposed and 17 HP-naïve samples had been preserved as fresh-frozen samples. HP infection status was determined using stringent criteria. HP-exposed DGCs exhibited an increased single nucleotide variant burden (HP-exposed DGCs; 1.97 [0.48-7.19] and HP-naïve DGCs; 1.09 [0.38-3.68] per megabase; p = 0.0003) and a higher prevalence of chromosome arm-level aneuploidies (p < 0.0001). CDH1 was mutated at similar frequencies in both groups, whereas the RHOA-ARHGAP pathway misregulation was exclusive to HP-exposed DGCs (p = 0.0167). HP-exposed DGCs showed gains in chromosome arms 8p/8q (p < 0.0001), 7p (p = 0.0035), and 7q (p = 0.0354), and losses in 16q (p = 0.0167). Immunohistochemical analyses revealed a higher expression of intestinal markers such as CD10 (p < 0.0001) and CDX2 (p = 0.0002) and a lower expression of the gastric marker, MUC5AC (p = 0.0305) among HP-exposed DGCs. HP-naïve DGCs, on the other hand, had a purely gastric marker phenotype. This work reveals that HP-naïve and HP-exposed DGCs develop along different molecular pathways, which provide a basis for early detection strategies in high incidence settings. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Gastric Mucosa/pathology , Genomics , Helicobacter Infections/complications , Helicobacter pylori/genetics , Humans , Nucleotides/metabolism , Stomach Neoplasms/pathology
5.
JCO Precis Oncol ; 6: e2200085, 2022 05.
Article in English | MEDLINE | ID: mdl-35613413

ABSTRACT

PURPOSE: Homologous recombination DNA repair deficiency (HRD) is associated with sensitivity to platinum and poly (ADP-ribose) polymerase inhibitors in certain cancer types, including breast, ovarian, pancreatic, and prostate. In these cancers, BRCA1/2 alterations and genomic scar signatures are useful indicators for assessing HRD. However, alterations in other homologous recombination repair (HRR)-related genes and their clinical significance in other cancer types have not been adequately and systematically investigated. METHODS: We obtained data sets of all solid tumors in The Cancer Genome Atlas and comprehensively analyzed HRR pathway gene alterations, their loss-of-heterozygosity status, per-sample genomic scar scores, ie, the HRD score and mutational signature 3 ratio, DNA methylation profiles, gene expression profiles, somatic TP53 mutations, sex, and clinical information including chemotherapeutic regimens. RESULTS: Biallelic alterations in HRR genes other than BRCA1/2 were also associated with elevated genomic scar scores. The association between HRR-related gene alterations and genomic scar scores differed significantly by sex and the presence of somatic TP53 mutations. HRD cases determined by a combination of these indices also showed HRD features in gene expression analysis and were associated with better survival when treated with DNA-damaging agents. CONCLUSION: This study provides evidence for the usefulness of HRD analysis in all cancer types, improves chemotherapy decision making and its efficacy in clinical settings, and represents a substantial advancement in precision oncology.


Subject(s)
Neoplasms , Biomarkers , Cicatrix/drug therapy , Female , Humans , Male , Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Precision Medicine , Recombinational DNA Repair/genetics
6.
JCO Precis Oncol ; 52021 08.
Article in English | MEDLINE | ID: mdl-34423229

ABSTRACT

Homologous recombination DNA repair deficiency (HRD) is associated with sensitivity to platinum and poly (ADP-ribose) polymerase inhibitors in certain cancer types, including breast, ovarian, pancreatic, and prostate. In these cancers, BRCA1/2 alterations and genomic scar signatures are useful indicators for assessing HRD. However, alterations in other homologous recombination repair (HRR)-related genes and their clinical significance in other cancer types have not been adequately and systematically investigated. METHODS: We obtained data sets of all solid tumors in The Cancer Genome Atlas and Cancer Cell Line Encyclopedia, and comprehensively analyzed HRR pathway gene alterations, their loss-of-heterozygosity status, and per-sample genomic scar scores, that is, the HRD score and mutational signature 3 ratio, DNA methylation profiles, gene expression profiles, somatic TP53 mutations, sex, and clinical or in vitro response to chemical exposure. RESULTS: Biallelic alterations in HRR genes other than BRCA1/2 were also associated with elevated genomic scar scores. The association between HRR-related gene alterations and genomic scar scores differed significantly by sex and the presence of somatic TP53 mutations. HRD tumors determined by a combination of indices also showed HRD features in gene expression analysis and exhibited significantly higher sensitivity to DNA-damaging agents than non-HRD cases in both clinical samples and cell lines. CONCLUSION: This study provides evidence for the usefulness of HRD analysis in all cancer types, improves chemotherapy decision making and its efficacy in clinical settings, and represents a substantial advancement in precision oncology.A comprehensive pan-cancer analysis on the clinical significance of homologous recombination deficiency.


Subject(s)
Neoplasms , Biomarkers , Female , Humans , Male , Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Precision Medicine , Recombinational DNA Repair/genetics
7.
Cancer Sci ; 112(3): 1310-1319, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33421217

ABSTRACT

Genes involved in the homologous recombination repair pathway-as exemplified by BRCA1, BRCA2, PALB2, ATM, and CHEK2-are frequently associated with hereditary breast and ovarian cancer syndrome. Germline mutations in the loci of these genes with loss of heterozygosity or additional somatic truncation at the WT allele lead to the development of breast cancers with characteristic clinicopathological features and prominent genomic features of homologous recombination deficiency, otherwise referred to as "BRCAness." Although clinical genetic testing for these and other genes has increased the chances of identifying pathogenic variants, there has also been an increase in the prevalence of variants of uncertain significance, which poses a challenge to patient care because of the difficulties associated with making further clinical decisions. To overcome this challenge, we sought to develop a methodology to reclassify the pathogenicity of these unknown variants using statistical modeling of BRCAness. The model was developed with Lasso logistic regression by comparing 116 genomic attributes derived from 37 BRCA1/2 biallelic mutant and 32 homologous recombination-quiescent breast cancer exomes. The model showed 95.8% and 86.7% accuracies in the training cohort and The Cancer Genome Atlas validation cohort, respectively. Through application of the model for variant reclassification of homologous recombination-associated hereditary breast and ovarian cancer causal genes and further assessment with clinicopathological features, we finally identified one likely pathogenic and five likely benign variants. As such, the BRCAness model developed from the tumor exome was robust and provided a reasonable basis for variant reclassification.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Homologous Recombination , Models, Genetic , Adult , Aged , Ataxia Telangiectasia Mutated Proteins/genetics , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast/pathology , Breast/surgery , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Checkpoint Kinase 2/genetics , DNA Mutational Analysis , Datasets as Topic , Exome/genetics , Fanconi Anemia Complementation Group N Protein/genetics , Female , Genetic Testing/methods , Germ-Line Mutation , Humans , Mastectomy , Middle Aged , Exome Sequencing
8.
NPJ Breast Cancer ; 6: 25, 2020.
Article in English | MEDLINE | ID: mdl-32566746

ABSTRACT

Panel sequencing of susceptibility genes for hereditary breast and ovarian cancer (HBOC) syndrome has uncovered numerous germline variants; however, their pathogenic relevance and ethnic diversity remain unclear. Here, we examined the prevalence of germline variants among 568 Japanese patients with BRCA1/2-wildtype HBOC syndrome and a strong family history. Pathogenic or likely pathogenic variants were identified on 12 causal genes for 37 cases (6.5%), with recurrence for 4 SNVs/indels and 1 CNV. Comparisons with non-cancer east-Asian populations and European familial breast cancer cohorts revealed significant enrichment of PALB2, BARD1, and BLM mutations. Younger onset was associated with but not predictive of these mutations. Significant somatic loss-of-function alterations were confirmed on the wildtype alleles of genes with germline mutations, including PALB2 additional somatic truncations. This study highlights Japanese-associated germline mutations among patients with BRCA1/2 wildtype HBOC syndrome and a strong family history, and provides evidence for the medical care of this high-risk population.

9.
Plant Physiol ; 149(2): 835-40, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19052151

ABSTRACT

Roots respond not only to gravity but also to moisture gradient by displaying gravitropism and hydrotropism, respectively, to control their growth orientation, which helps plants obtain water and become established in the terrestrial environment. As gravitropism often interferes with hydrotropism, however, the mechanisms of how roots display hydrotropism and differentiate it from gravitropism are not understood. We previously reported MIZU-KUSSEI1 (MIZ1) as a gene required for hydrotropism but not for gravitropism, although the function of its protein was not known. Here, we found that a mutation of GNOM encoding guanine-nucleotide exchange factor for ADP-ribosylation factor-type G proteins was responsible for the ahydrotropism of Arabidopsis (Arabidopsis thaliana), miz2. Unlike other gnom alleles, miz2 showed no apparent morphological defects or reduced gravitropism. Instead, brefeldin A (BFA) treatment inhibited both hydrotropism and gravitropism in Arabidopsis roots. In addition, a BFA-resistant GNOM variant, GNM696L, showed normal hydrotropic response in the presence of BFA. Furthermore, a weak gnom allele, gnomB/E, showed defect in hydrotropic response. These results indicate that GNOM-mediated vesicular trafficking plays an essential role in hydrotropism of seedling roots.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Guanine Nucleotide Exchange Factors/metabolism , Plant Roots/physiology , Seedlings/physiology , Water/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Cloning, Molecular , Genetic Variation , Gravitropism/physiology , Guanine Nucleotide Exchange Factors/genetics , Molecular Sequence Data , Plant Roots/growth & development , Sequence Alignment , Tropism/physiology
10.
J Radiat Res ; 49(4): 373-9, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18413976

ABSTRACT

Classical studies on root hydrotropism have hypothesized the importance of columella cells as well as the de novo gene expression, such as auxin-inducible gene, at the elongation zone in hydrotropism; however, there has been no confirmation that columella cells or auxin-mediated signaling in the elongation zone are necessary for hydrotropism. We examined the role of root cap and elongation zone cells in root hydrotropism using heavy-ion and laser microbeam. Heavy-ion microbeam irradiation of the elongation zone, but not that of the columella cells, significantly and temporarily suppressed the development of hydrotropic curvature. However, laser ablation confirmed that columella cells are indispensable for hydrotropism. Systemic heavy-ion broad-beam irradiation suppressed de novo expression of INDOLE ACETIC ACID 5 gene, but not MIZU-KUSSEI1 gene. Our results indicate that both the root cap and elongation zone have indispensable and functionally distinct roles in root hydrotropism, and that de novo gene expression might be required for hydrotropism in the elongation zone, but not in columella cells.


Subject(s)
Arabidopsis/physiology , Arabidopsis/radiation effects , Plant Roots/physiology , Plant Roots/radiation effects , Tropism/physiology , Tropism/radiation effects , Water/pharmacology , Arabidopsis/drug effects , Dose-Response Relationship, Radiation , Heavy Ions , Lasers , Plant Roots/drug effects , Plants , Radiation Dosage , Tropism/drug effects
11.
J Exp Bot ; 58(5): 1143-50, 2007.
Article in English | MEDLINE | ID: mdl-17244629

ABSTRACT

Plants are sessile in nature, and need to detect and respond to many environmental cues in order to regulate their growth and orientation. Indeed, plants sense numerous environmental cues and respond via appropriate tropisms, and it is widely accepted that auxin plays an important role in these responses. Recent analyses using Arabidopsis have emphasized the importance of polar auxin transport and differential auxin responses to gravitropism. Even so, the involvement of auxin in hydrotropism remains unclear. To clarify whether or not auxin is involved in the hydrotropic response, Arabidopsis seedlings were treated with inhibitors of auxin influx (3-chloro-4-hydroxyphenylacetic acid), efflux (1-naphthylphthalemic acid and 2,3,5-triiodobenzoic acid), and response (p-chlorophenoxyisobutylacetic acid), and their effects were examined on both hydrotropic and gravitropic responses. In agreement with previous reports, gravitropism was inhibited by all the chemicals tested. By contrast, only an inhibitor of the auxin response (p-chlorophenoxyisobutylacetic acid) reduced hydrotropism, whereas inhibitors for influx or efflux of auxin had no effect. These results suggest that auxin response, apart from its polar transport, plays a definite role in hydrotropic response, and will evoke a new concept for the auxin-mediated regulation of tropisms.


Subject(s)
Arabidopsis/metabolism , Biological Transport/physiology , Indoleacetic Acids/metabolism , Plant Roots/metabolism , Tropism/physiology , Water/metabolism , Arabidopsis/drug effects , Arabidopsis/growth & development , Indoleacetic Acids/antagonists & inhibitors , Phenylacetates/pharmacology , Plant Roots/drug effects , Plant Roots/growth & development , Seedlings/drug effects , Seedlings/growth & development , Time Factors , Triiodobenzoic Acids/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL