Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Funct Integr Genomics ; 24(3): 114, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862667

ABSTRACT

With advances in radioactive particle implantation in clinical practice, Iodine-125 (125I) seed brachytherapy has emerged as a promising treatment for cholangiocarcinoma (CCA), showing good prognosis; however, the underlying molecular mechanism of the therapeutic effect of 125I seed is unclear. To study the effects of 125I seed on the proliferation and apoptosis of CCA cells. CCA cell lines, RBE and HCCC-9810, were treated with reactive oxygen species (ROS) scavenger acetylcysteine (NAC) or the p53 functional inhibitor, pifithrin-α hydrobromide (PFTα). Cell counting kit-8 (CCK-8) assay, 5-bromo-2-deoxy-uridine (BrdU) staining, and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay and flow cytometry assay were performed to test the radiation-sensitivity of 125I seed toward CCA cells at different radiation doses (0.4 mCi and 0.8 mCi). 2,7-dichlorofluorescein diacetate (DCF-DA) assay, real-time quantitative polymerase chain reaction (RT-qPCR), and western blot analysis were performed to assess the effect of 125I seed on the ROS/p53 axis. A dose-dependent inhibitory effect of 125I seeds on the proliferation of CCA cells was observed. The 125I seed promoted apoptosis of CCA cells and induced the activation of the ROS/p53 pathway in a dose-dependent manner. NAC or PFTα treatment effectively reversed the stimulatory effect of 125I seed on the proliferation of CCA cells. NAC or PFTα suppressed apoptosis and p53 protein expression induced by the 125I seed. 125I seed can inhibit cell growth mainly through the apoptotic pathway. The mechanism may involve the activation of p53 and its downstream apoptotic pathway by up-regulating the level of ROS in cells.


Subject(s)
Apoptosis , Cell Proliferation , Cholangiocarcinoma , Iodine Radioisotopes , Reactive Oxygen Species , Tumor Suppressor Protein p53 , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/radiotherapy , Cholangiocarcinoma/pathology , Cholangiocarcinoma/genetics , Cholangiocarcinoma/drug therapy , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Humans , Cell Line, Tumor , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/radiotherapy , Acetylcysteine/pharmacology , Benzothiazoles/pharmacology , Signal Transduction/drug effects
2.
Mol Biotechnol ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37702882

ABSTRACT

Pancreatic adenocarcinoma (PAAD) is a lethal malignancy of the gastrointestinal tract. Circular RNA, an endogenous noncoding RNA, is considered a new regulatory molecule in tumorigenesis and development. Here, we aimed to investigate the role of circPGAM1 in PAAD. The PAAD cell line HPAC was transfected with OE-circPGAM1 to overexpress circPGAM1 and treated with AZD5363 to inhibit the AKT/mTOR pathway. Simultaneously, another PAAD cell line BxPC-3 was transfected with sh-circPGAM1 to silence circPGAM1. The GEPIA database was used to determine the expression of circPGAM1 in PAAD and its association with overall and disease-free survival. CircPGAM1 expression levels were determined in cell lines using reverse transcription-quantitative PCR. The cell counting kit-8, wound healing, and transwell assays were performed to determine cell migration and invasion. The protein expression levels of phosphorylated AKT and mTOR were determined using western blotting. CircPGAM1 was overexpressed in PAAD and related to poor prognosis. Silencing circPGAM1 inhibited migration and invasion of BxPC-3 cells, and overexpression of circPGAM1 showed the opposite effects. Overall, circPGAM1 promoted the migration and invasion of PAAD cells through the AKT/mTOR axis.

3.
Open Life Sci ; 18(1): 20220538, 2023.
Article in English | MEDLINE | ID: mdl-37070074

ABSTRACT

The PI3K/AKT/mTOR (phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin) pathway can be initiated by PROK1 (prokineticin 1), but its effect and mechanism of action in pancreatic carcinoma (PC) are not fully understood. In this study, we elucidated the roles of PROK1 and its related molecules in PC in vivo. PANC-1 cells with PROK1 knockdown were injected into BALB/c nude mice. The growth and weight of the tumor were monitored and measured, which was followed by TUNEL (terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling), immunohistochemical staining, and hematoxylin and eosin staining. The key proteins related to proliferation, apoptosis, and the PI3K/AKT/mTOR pathway were determined by Western blotting. We also used public databases to identify the molecules related to PROK1. The reduction of PROK1 inhibited angiopoiesis and promoted apoptosis in vivo. PCNA-1, cyclin D1, and Bcl-2 decreased considerably, while Bax and cleaved caspase-3 increased significantly after PROK1 inhibition. The PI3K/AKT/mTOR signal inhibition was also closely associated with PROK1 knockdown. The possible related molecules of PROK1, such as von Willebrand factor, were screened and considered to be involved in the aberrant activation of PI3K/AKT. In conclusion, PROK1 knockdown significantly prevented tumor growth and promoted apoptosis of human PC cells in vivo, where the PI3K/AKT/mTOR pathway was probably inhibited. Therefore, PROK1, along with its related molecules, might be important targets for PC therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...