Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Agric Food Chem ; 69(21): 6032-6042, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34008977

ABSTRACT

Although the health benefits of probiotics have been widely known for decades, there has still been limited use of probiotic bacteria in anti-obesity therapy. Herein, we demonstrated the role of Bifidobacterium longum subsp. infantis YB0411 (YB, which was selected by an in vitro adipogenesis assay) in adipogenic differentiation in 3T3-L1 pre-adipocytes. We observed that YB-treatment effectively reduced triglyceride accumulation and the expression of CCAAT/enhancer-binding protein α, ß, and δ (C/EBPα, C/EBPß, and C/EBPδ), peroxisome proliferator-activated receptor γ (PPARγ), fatty acid-binding protein 4 (aP2), and acetyl-CoA carboxylase (ACC). YB-treatment also reduced the levels of core autophagic markers (p62 and LC3B) in 3T3-L1 pre-adipocytes. Small-interfering-RNA-mediated knockdown and competitive-chemical-inhibition assays showed that AMP-activated protein kinase (AMPK) commenced the anti-adipogenic effect of YB. In addition, YB supplement markedly reduced body weight and fat accretion in mice with high-fat-diet-induced obesity. Our findings suggest that YB may be used as a potential probiotic candidate to ameliorate obesity.


Subject(s)
Adipogenesis , Bifidobacterium longum , 3T3-L1 Cells , AMP-Activated Protein Kinases/genetics , Adipocytes , Animals , CCAAT-Enhancer-Binding Protein-alpha/genetics , Cell Differentiation , Mice , Obesity/genetics , PPAR gamma/genetics
2.
RSC Adv ; 8(46): 26266-26270, 2018 Jul 19.
Article in English | MEDLINE | ID: mdl-35541965

ABSTRACT

We developed a facile method for the detection of pathogenic bacteria using gold-coated magnetic nanoparticle clusters (Au@MNCs) and porous nitrocellulose strips. Au@MNCs were synthesized and functionalized with half-fragments of Escherichia coli O157 antibodies. After the nanoparticles were used to capture E. coli O157 in milk and dispersed in a buffer solution, one end of a test strip was dipped into the solution. Due to the size difference between the E. coli-Au@MNC complexes (approximately 1 µm) and free Au@MNCs (approximately 180 nm), only E. coli-Au@MNC complexes accumulated at the meniscus of the test strip and induced a color change. The color intensity of the meniscus was proportional to the E. coli concentration, and the detection limit for E. coli in milk was 103 CFU mL-1 by the naked eye. The presence of E. coli-Au@MNC complexes at the meniscus was confirmed using a real-time PCR assay. The developed method was highly selective for E. coli when compared with Salmonella typhimurium, Listeria monocytogenes, and Staphylococcus aureus.

SELECTION OF CITATIONS
SEARCH DETAIL