Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
Add more filters











Publication year range
1.
Stem Cells ; 42(1): 29-41, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-37933895

ABSTRACT

Poor proliferative capacity of adult cardiomyocytes is the primary cause of heart failure after myocardial infarction (MI), thus exploring the molecules and mechanisms that promote the proliferation of adult cardiomyocytes is crucially useful for cardiac repair after MI. Here, we found that miR-130b-5p was highly expressed in mouse embryonic and neonatal hearts and able to promote cardiomyocyte proliferation both in vitro and in vivo. Mechanistic studies revealed that miR-130b-5p mainly promoted the cardiomyocyte proliferation through the MAPK-ERK signaling pathway, and the dual-specific phosphatase 6 (Dusp6), a negative regulator of the MAPK-ERK signaling, was the direct target of miR-130b-5p. Moreover, we found that overexpression of miR-130b-5p could promote the proliferation of cardiomyocytes and improve cardiac function in mice after MI. These studies thus revealed the critical role of miR-130b-5p and its targeted MAPK-ERK signaling in the cardiomyocyte proliferation of adult hearts and proved that miR-130b-5p could be a potential target for cardiac repair after MI.


Subject(s)
MicroRNAs , Myocardial Infarction , Mice , Animals , Myocytes, Cardiac/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Signal Transduction/genetics , Cell Proliferation/genetics , Apoptosis
2.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958523

ABSTRACT

METTL3, a methyltransferase responsible for N6-methyladenosine (m6A) modification, plays key regulatory roles in mammal central neural system (CNS) development. However, the specific epigenetic mechanisms governing human CNS development remain poorly elucidated. Here, we generated small-molecule-assisted shut-off (SMASh)-tagged hESC lines to reduce METTL3 protein levels, and found that METTL3 is not required for human neural progenitor cell (hNPC) formation and neuron differentiation. However, METTL3 deficiency inhibited hNPC proliferation by reducing SLIT2 expression. Mechanistic studies revealed that METTL3 degradation in hNPCs significantly decreased the enrichment of m6A in SLIT2 mRNA, consequently reducing its expression. Our findings reveal a novel functional target (SLIT2) for METTL3 in hNPCs and contribute to a better understanding of m6A-dependent mechanisms in hNPC proliferation.


Subject(s)
Methyltransferases , Neural Stem Cells , Humans , Cell Proliferation/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Neural Stem Cells/cytology
3.
EMBO J ; 42(16): e110757, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37427448

ABSTRACT

The tumor microenvironment (TME) directly determines patients' outcomes and therapeutic efficiencies. An in-depth understanding of the TME is required to improve the prognosis of patients with cervical cancer (CC). This study conducted single-cell RNA and TCR sequencing of six-paired tumors and adjacent normal tissues to map the CC immune landscape. T and NK cells were highly enriched in the tumor area and transitioned from cytotoxic to exhaustion phenotypes. Our analyses suggest that cytotoxic large-clone T cells are critical effectors in the antitumor response. This study also revealed tumor-specific germinal center B cells associated with tertiary lymphoid structures. A high-germinal center B cell proportion in patients with CC is predictive of improved clinical outcomes and is associated with elevated hormonal immune responses. We depicted an immune-excluded stromal landscape and established a joint model of tumor and stromal cells to predict CC patients' prognosis. The study revealed tumor ecosystem subsets linked to antitumor response or prognosis in the TME and provides information for future combinational immunotherapy.


Subject(s)
Uterine Cervical Neoplasms , Humans , Female , Tumor Microenvironment , Ecosystem , Killer Cells, Natural , Immunotherapy
4.
Cell Death Discov ; 9(1): 244, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37452012

ABSTRACT

The zinc finger proteins (ZNFs) mediated transcriptional regulation is critical for cell fate transition. However, it is still unclear how the ZNFs realize their specific regulatory roles in the stage-specific determination of cardiomyocyte differentiation. Here, we reported that the zinc fingers and homeoboxes 1 (Zhx1) protein, transiently expressed during the cell fate transition from mesoderm to cardiac progenitors, was indispensable for the proper cardiomyocyte differentiation of mouse and human embryonic stem cells. Moreover, Zhx1 majorly promoted the specification of cardiac progenitors via interacting with hnRNPA1 and co-activated the transcription of a wide range of genes. In-depth mechanistic studies showed that Zhx1 was bound with hnRNPA1 by the amino acid residues (Thr111-His120) of the second Znf domain, thus participating in the formation of cardiac progenitors. Together, our study highlights the unrevealed interaction of Zhx1/hnRNPA1 for activating gene transcription during cardiac progenitor specification and also provides new evidence for the specificity of cell fate determination in cardiomyocyte differentiation.

5.
Aging Cell ; 22(4): e13794, 2023 04.
Article in English | MEDLINE | ID: mdl-36797653

ABSTRACT

Hippocampal neural stem cell (NSC) proliferation is known to decline with age, which is closely linked to learning and memory impairments. In the current study, we found that the expression level of miR-181a-5p was decreased in the hippocampal NSCs of aged mice and that exogenous overexpression of miR-181a-5p promoted NSC proliferation without affecting NSC differentiation into neurons and astrocytes. The mechanistic study revealed that phosphatase and tensin homolog (PTEN), a negative regulator of the AKT signaling pathway, was the target of miR-181a-5p and knockdown of PTEN could rescue the impairment of NSC proliferation caused by low miR-181a-5p levels. Moreover, overexpression of miR-181a-5p in the dentate gyrus enhanced the proliferation of NSCs and ameliorated learning and memory impairments in aged mice. Taken together, our findings indicated that miR-181a-5p played a functional role in NSC proliferation and aging-related, hippocampus-dependent learning and memory impairments.


Subject(s)
MicroRNAs , Neural Stem Cells , Animals , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction , Cell Differentiation/genetics , Neural Stem Cells/metabolism , Cell Proliferation/genetics , Apoptosis
6.
Int J Mol Sci ; 24(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36834610

ABSTRACT

Acute myocardial infarction (AMI) accompanied by cardiac remodeling still lacks effective treatment to date. Accumulated evidences suggest that exosomes from various sources play a cardioprotective and regenerative role in heart repair, but their effects and mechanisms remain intricate. Here, we found that intramyocardial delivery of plasma exosomes from neonatal mice (npEXO) could help to repair the adult heart in structure and function after AMI. In-depth proteome and single-cell transcriptome analyses suggested that npEXO ligands were majorly received by cardiac endothelial cells (ECs), and npEXO-mediated angiogenesis might serve as a pivotal reason to ameliorate the infarcted adult heart. We then innovatively constructed systematical communication networks among exosomal ligands and cardiac ECs and the final 48 ligand-receptor pairs contained 28 npEXO ligands (including the angiogenic factors, Clu and Hspg2), which mainly mediated the pro-angiogenic effect of npEXO by recognizing five cardiac EC receptors (Kdr, Scarb1, Cd36, etc.). Together, the proposed ligand-receptor network in our study might provide inspiration for rebuilding the vascular network and cardiac regeneration post-MI.


Subject(s)
Exosomes , Myocardial Infarction , Mice , Animals , Endothelial Cells , Ligands , Myocardial Infarction/therapy , Heart
7.
Transl Res ; 253: 80-94, 2023 03.
Article in English | MEDLINE | ID: mdl-36223881

ABSTRACT

Integration of high-risk human papillomavirus (HPV) into the host genome is a crucial event for the development of cervical cancer, however, the underlying mechanism of HPV integration-driven carcinogenesis remains unknown. Here, we performed long-read RNA sequencing on 12 high-grade squamous intraepithelial lesions (HSIL) and cervical cancer patients, including 3 pairs of cervical cancer and corresponding para-cancerous tissue samples to investigate the full-length landscape of cross-species genome integrations. In addition to massive unannotated isoforms, transcriptional regulatory events, and gene chimerism, more importantly, we found that HPV-human fusion events were prevalent in HPV-associated cervical cancers. Combined with the genome data, we revealed the existence of a universal transcription pattern in these fusion events, whereby structurally similar fusion transcripts were generated by specific splicing in E6 and a canonical splicing donor site in E1 linking to various human splicing acceptors. Highly expressed HPV-human fusion transcripts, eg, HPV16 E6*I-E7-E1SD880-human gene, were the key driver of cervical carcinogenesis, which could trigger overexpression of E6*I and E7, and destroy the transcription of tumor suppressor genes CMAHP, TP63 and P3H2. Finally, evidence from in vitro and in vivo experiments demonstrates that the novel read-through fusion gene mRNA, E1-CMAHP (E1C, formed by the integration of HPV58 E1 with CMAHP), existed in the fusion transcript can promote malignant transformation of cervical epithelial cells via regulating downstream oncogenes to participate in various biological processes. Taken together, we reveal a previously unknown mechanism of HPV integration-driven carcinogenesis and provide a novel target for the diagnosis and treatment of cervical cancer.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Papillomavirus Infections/complications , Papillomavirus Infections/genetics , Papillomavirus Infections/diagnosis , Carcinogenesis/genetics
8.
Stem Cells ; 41(1): 11-25, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36318802

ABSTRACT

As crucial epigenetic regulators, long noncoding RNAs (lncRNAs) play critical functions in development processes and various diseases. However, the regulatory mechanism of lncRNAs in early heart development is still limited. In this study, we identified cardiac mesoderm-related lncRNA (LncCMRR). Knockout (KO) of LncCMRR decreased the formation potential of cardiac mesoderm and cardiomyocytes during embryoid body differentiation of mouse embryonic stem (ES) cells. Mechanistic analyses showed that LncCMRR functionally interacted with the transcription suppressor PURB and inhibited its binding potential at the promoter region of Flk1, which safeguarded the transcription of Flk1 during cardiac mesoderm formation. We also carried out gene ontology term and signaling pathway enrichment analyses for the differentially expressed genes after KO of LncCMRR, and found significant correlation of LncCMRR with cardiac muscle contraction, dilated cardiomyopathy, and hypertrophic cardiomyopathy. Consistently, the expression level of Flk1 at E7.75 and the thickness of myocardium at E17.5 were significantly decreased after KO of LncCMRR, and the survival rate and heart function index of LncCMRR-KO mice were also significantly decreased as compared with the wild-type group. These findings indicated that the defects in early heart development led to functional abnormalities in adulthood heart of LncCMRR-KO mice. Conclusively, our findings elucidate the main function and regulatory mechanism of LncCMRR in cardiac mesoderm formation, and provide new insights into lncRNA-mediated regulatory network of mouse ES cell differentiation.


Subject(s)
RNA, Long Noncoding , Animals , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice, Knockout , Cell Differentiation/genetics , Myocardium , Myocytes, Cardiac , Mesoderm/metabolism
9.
Cell Death Discov ; 8(1): 476, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36460658

ABSTRACT

Schizophrenia is a highly debilitating mental disorder, those who experienced fetal growth restriction (FGR) in the early stage of life have a greater probability of schizophrenia. In this study, FGR mice showed hyperactivity in locomotor activity test, sociability dysfunction in three chamber test and nesting social behavior tests, cognition decline in Morris water maze and impaired sensory motor gating function in prepulse inhibition test. Mechanistic studies indicated that the number of parvalbumin (PV) interneuron was significantly reduced in FGR mouse media prefrontal cortex (mPFC). And the mRNA and protein level of neuregulin 1(NRG1), which is a critical schizophrenia gene, increased significantly in FGR mouse mPFC. Furthermore, NRG1 knockdown in FGR mouse mPFC improved PV interneuron GABAergic maturation and rescued schizophrenia behaviors including hyperactivity, social novelty defects, cognition decline, and sensorimotor gating deficits in FGR mice. This study indicates that mPFC NRG1 upregulation is one of the main causes of FGR-induced schizophrenia, which leads to significant reduction of PV interneuron number in mPFC. NRG1 knockdown in mPFC significantly rescues schizophrenia behaviors in FGR mouse. This study thus provides a potential effective therapy target or strategy for schizophrenia patients induced by FGR.

10.
Front Microbiol ; 13: 944361, 2022.
Article in English | MEDLINE | ID: mdl-36060780

ABSTRACT

Extracellular vesicle-mediated transfer of microRNAs is a novel mode of cell-to-cell genetic transmission. Extracellular vesicles produced by microbes have been shown to contain significant quantities of physiologically active molecules such as proteins, lipids, and RNA, which could be transported to host cells and play a key role in both inter-kingdom signaling and physiological responses. In this study, we identified sRNAs by sequencing small RNAs (sRNAs) from Lactobacillus plantarum-derived extracellular vesicles (LDEVs) and detected the expression levels of vesicular sRNAs using quantitative reverse transcription-polymerase chain reaction (RT-PCR), which demonstrated the presence of microRNA-sized RNAs (msRNAs) within these vesicles. We chose sRNA71, a highly expressed msRNA, for further investigation, predicted its potential target genes for the human genome, and indicated that it could be translocated into mammalian cells. The biological functions of this sRNA71 were subsequently explored through cellular proteomics, western blot, and luciferase reporter assay. According to the findings, transfection with synthetic sRNA71 mimics substantially reduced Tp53 expression in HEK293T cells and suppressed the gene expression through binding to the 3' UTR of Tp53 mRNA. In conclusion, it is hypothesized that microbial-derived extracellular vesicles serve as carriers of functional molecules such as sRNAs, which play an essential role in regulating microbial-host communication.

11.
Mol Ther Nucleic Acids ; 29: 481-497, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36035750

ABSTRACT

The immature phenotype of embryonic stem cell-derived cardiomyocytes (ESC-CMs) limits their application. However, the molecular mechanisms of cardiomyocyte maturation remain largely unexplored. This study found that overexpression of long noncoding RNA (lncRNA)-Cmarr, which was highly expressed in cardiomyocytes, promoted the maturation change and physiological maturation of mouse ESC-CMs (mESC-CMs). Moreover, transplantation of cardiac patch overexpressing Cmarr exhibited better retention of mESC-CMs, reduced infarct area by enhancing vascular density in the host heart, and improved cardiac function in mice after myocardial infarction. Mechanism studies identified that Cmarr acted as a competitive endogenous RNA to impede the repression of miR-540-3p on Dtna expression and promoted the binding of the dystrophin-glycoprotein complex (DGC) and yes-associated protein (YAP), which in turn reduced the proportion of nuclear YAP and the expression of YAP target genes. Therefore, this study revealed the function and mechanism of Cmarr in promoting cardiomyocyte maturation and provided a lncRNA that can be used as a functional factor in the construction of cardiac patches for the treatment of myocardial infarction.

12.
Stem Cells ; 40(1): 22-34, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35511866

ABSTRACT

The transition of embryonic stem cells from the epiblast stem cells (EpiSCs) to neural progenitor cells (NPCs), called the neural induction process, is crucial for cell fate determination of neural differentiation. However, the mechanism of this transition is unclear. Here, we identified a long non-coding RNA (linc1548) as a critical regulator of neural differentiation of mouse embryonic stem cells (mESCs). Knockout of linc1548 did not affect the conversion of mESCs to EpiSCs, but delayed the transition from EpiSCs to NPCs. Moreover, linc1548 interacts with the transcription factors OCT6 and SOX2 forming an RNA-protein complex to regulate the transition from EpiSCs to NPCs. Finally, we showed that Zfp521 is an important target gene of this RNA-protein complex regulating neural differentiation. Our findings prove how the intrinsic transcription complex is mediated by a lncRNA linc1548 and can better understand the intrinsic mechanism of neural fate determination.


Subject(s)
Embryonic Stem Cells , Germ Layers , Animals , Cell Differentiation/genetics , Mice , Mice, Knockout , RNA , RNA, Long Noncoding , SOXB1 Transcription Factors
13.
Stem Cell Reports ; 17(5): 1154-1169, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35395174

ABSTRACT

Previous studies have shown that eukaryotic elongation factor 1A2 (eEF1A2) serves as an essential heart-specific translation elongation element and that its mutation or knockout delays heart development and causes congenital heart disease and death among species. However, the function and regulatory mechanisms of eEF1A2 in mammalian heart development remain largely unknown. Here we identified the long noncoding RNA (lncRNA) Cpmer (cytoplasmic mesoderm regulator), which interacted with eEF1A2 to co-regulate differentiation of mouse and human embryonic stem cell-derived cardiomyocytes. Mechanistically, Cpmer specifically recognized Eomes mRNA by RNA-RNA pairing and facilitated binding of eEF1A2 with Eomes mRNA, guaranteeing Eomes mRNA translation and cardiomyocyte differentiation. Our data reveal a novel functionally conserved lncRNA that can specifically regulate Eomes translation and cardiomyocyte differentiation, which broadens our understanding of the mechanism of lncRNA involvement in the subtle translational regulation of eEF1A2 during mammalian heart development.


Subject(s)
Myocytes, Cardiac , RNA, Long Noncoding , Animals , Cell Differentiation/genetics , Eukaryota/genetics , Eukaryota/metabolism , Mammals/genetics , Mammals/metabolism , Myocytes, Cardiac/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism
14.
Mol Ther Nucleic Acids ; 27: 1064-1077, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35228900

ABSTRACT

Individuals with diffuse large B cell lymphoma (DLBCL) infected with hepatitis B virus (HBV) have worse chemotherapy efficacy and poorer outcomes. It is still unclear whether long noncoding RNAs (lncRNAs) serve as prognostic and therapeutic targets in the chemotherapy resistance of individuals with DLBCL and HBV infection. Here we found that the core component of HBV (HBX) directly upregulated the expression of lncNBAT1, which was closely associated with the chemotherapy outcomes of HBV-infected individuals with DLBCL. Upregulation of lncNBAT1 reduced the sensitivity of DLBCL cells to chemotherapeutic agents (methotrexate [MTX] or cytarabine [Ara-C]) that induced S phase arrest, whereas knockdown of lncNBAT1 significantly relieved the chemoresistance of HBX-expressing DLBCLs. Mechanistically, lncNBAT1 could interact with the signal transducer and activator of transcription 1 (STAT1) to prevent its enrichment at the promoter region of the functional target gene apolipoprotein B mRNA editing enzyme catalytic subunit 3A (APOBEC3A), inhibiting expression of APOBEC3A and inducing resistance to MTX in DLBCL cells. Furthermore, clinical data analysis showed that lncNBAT1 and APOBEC3A expression was closely related to the poor prognosis and short survival of individuals with DLBCL. Our findings suggest a potential prognostic marker and a candidate lncRNA target for treating HBV-infected individuals with DLBCL.

15.
Stem Cell Res Ther ; 13(1): 29, 2022 01 24.
Article in English | MEDLINE | ID: mdl-35073971

ABSTRACT

BACKGROUND: Identifying novel regulatory factors and uncovered mechanisms of somatic cell reprogramming will be helpful for basic research and clinical application of induced pluripotent stem cells (iPSCs). Sin3a, a multifunctional transcription regulator, has been proven to be involved in the maintenance of pluripotency in embryonic stem cells (ESCs), but the role of Sin3a in somatic cell reprogramming remains unclear. METHODS: RNA interference of Sin3a during somatic cell reprogramming was realized by short hairpin RNAs. Reprogramming efficiency was evaluated by the number of alkaline phosphatase (AP)-positive colonies and Oct4-GFP-positive colonies. RNA sequencing was performed to identify the influenced biological processes after Sin3a knockdown and further confirmed by quantitative RT-PCR (qRT-PCR), western blotting and flow cytometry. The interaction between Sin3a and Tet1 was detected by coimmunoprecipitation. The enrichment of Sin3a and Tet1 at the epithelial gene promoters was measured by chromatin immunoprecipitation. Furthermore, DNA methylation patterns at the gene loci were investigated by hydroxymethylated DNA immunoprecipitation. Finally, Sin3a mutants that disrupt the interaction of Sin3a and Tet1 were also introduced to assess the importance of the Sin3a-Tet1 interaction during the mesenchymal-to-epithelial transition (MET) process. RESULTS: We found that Sin3a was gradually increased during OSKM-induced reprogramming and that knockdown of Sin3a significantly impaired MET at the early stage of reprogramming and iPSC generation. Mechanistic studies showed that Sin3a recruited Tet1 to facilitate the hydroxymethylation of epithelial gene promoters. Moreover, disrupting the interaction of Sin3a and Tet1 significantly blocked MET and iPSC generation. CONCLUSIONS: Our studies revealed that Sin3a was a novel mediator of MET during early reprogramming, where Sin3a functioned as an epigenetic coactivator, cooperating with Tet1 to activate the epithelial program and promote the initiation of somatic cell reprogramming. These findings highlight the importance of Sin3a in the MET process and deepen our understanding of the epigenetic regulatory network of early reprogramming.


Subject(s)
Cellular Reprogramming , Induced Pluripotent Stem Cells , Cell Differentiation , Cellular Reprogramming/genetics , DNA Methylation , Embryonic Stem Cells
16.
Cell Prolif ; 55(4): e13182, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35083805

ABSTRACT

'Requirements for Human-Induced Pluripotent Stem Cells' is the first set of guidelines on human-induced pluripotent stem cells in China, jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research. This standard specifies the technical requirements, test methods, and instructions for use, labeling, packaging, storage, transportation, and waste handling for human-induced pluripotent stem cells, which apply to the production and quality control of human-induced pluripotent stem cells. It was released by the Chinese Society for Cell Biology on 9 January 2021 and came into effect on 9 April 2021. We hope that the publication of these guidelines will promote institutional establishment, acceptance, and execution of proper protocols and accelerate the international standardization of human-induced pluripotent stem cells for applications.


Subject(s)
Induced Pluripotent Stem Cells , Cell Differentiation , China , Humans
17.
EMBO Rep ; 23(2): e53015, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34927789

ABSTRACT

Long noncoding RNAs (lncRNAs) are abundantly expressed in the nervous system, but their regulatory roles in neuronal differentiation are poorly understood. Using a human embryonic stem cell (hESC)-based 2D neural differentiation approach and a 3D cerebral organoid system, we show that SOX1-OT variant 1 (SOX1-OT V1), a SOX1 overlapping noncoding RNA, plays essential roles in both dorsal cortical neuron differentiation and ventral GABAergic neuron differentiation by facilitating SOX1 expression. SOX1-OT V1 physically interacts with HDAC10 through its 5' region, acts as a decoy to block HDAC10 binding to the SOX1 promoter, and thus maintains histone acetylation levels at the SOX1 promoter. SOX1 in turn activates ASCL1 expression and promotes neuronal differentiation. Taken together, we identify a SOX1-OT V1/HDAC10-SOX1-ASCL1 axis, which promotes neurogenesis, highlighting a role for lncRNAs in hESC neuronal differentiation.


Subject(s)
Human Embryonic Stem Cells , Neurons/cytology , RNA, Long Noncoding , SOXB1 Transcription Factors , Cell Differentiation/genetics , Histone Deacetylases/metabolism , Human Embryonic Stem Cells/cytology , Humans , Neurons/metabolism , RNA, Long Noncoding/genetics , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
18.
Cell Rep ; 37(5): 109912, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34731622

ABSTRACT

Fetal growth restriction (FGR) increases the risk for impaired cognitive function later in life. However, the precise mechanisms remain elusive. Using dexamethasone-induced FGR and protein restriction-influenced FGR mouse models, we observe learning and memory deficits in adult FGR offspring. FGR induces decreased hippocampal neurogenesis from the early post-natal period to adulthood by reducing the proliferation of neural stem cells (NSCs). We further find a persistent decrease of Tet1 expression in hippocampal NSCs of FGR mice. Mechanistically, Tet1 downregulation results in hypermethylation of the Dll3 and Notch1 promoters and inhibition of Notch signaling, leading to reduced NSC proliferation. Overexpression of Tet1 activates Notch signaling, offsets the decline in neurogenesis, and enhances learning and memory abilities in FGR offspring. Our data indicate that a long-term decrease in Tet1/Notch signaling in hippocampal NSCs contributes to impaired neurogenesis following FGR and could serve as potential targets for the intervention of FGR-related cognitive disorders.


Subject(s)
Behavior, Animal , Cognition , DNA-Binding Proteins/metabolism , Fetal Growth Retardation/metabolism , Hippocampus/metabolism , Neural Stem Cells/metabolism , Neurogenesis , Proto-Oncogene Proteins/metabolism , Animals , Cell Proliferation , Cells, Cultured , DNA Methylation , DNA-Binding Proteins/genetics , Disease Models, Animal , Epigenesis, Genetic , Female , Fetal Growth Retardation/physiopathology , Fetal Growth Retardation/psychology , Hippocampus/physiopathology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Memory , Mice, Inbred C57BL , Neural Stem Cells/pathology , Pregnancy , Prenatal Exposure Delayed Effects , Proto-Oncogene Proteins/genetics , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Signal Transduction
19.
Cancer Manag Res ; 13: 7355-7363, 2021.
Article in English | MEDLINE | ID: mdl-34584460

ABSTRACT

BACKGROUND: Obesity is defined as a chronic, low-grade inflammatory disease that can cause obesity-associated disorders, such as cancer. Obesity has traditionally been thought to be a risk factor for ovarian cancer. Few reports have focused on the specific pathogenesis of obesity-related ovarian cancer. When considering the correlation between obesity and the relative risk of death from ovarian cancer, we investigated whether obesity promotes tumor immune escape in ovarian cancer. RESULTS: In the present study, obese mice were found to have higher rates of tumor growth and tumor infiltration than mice of normal weight. Obesity increased the proportion of myeloid-derived suppressor cells (MDSCs) in peripheral blood compared with mice of normal weight. In addition, the levels of CCL25, CD40L, GM-CSF, IL-5, IGFBP2, IL-6, MMP3, and MMP9 in the peripheral blood, bone marrow, and ovarian tissue of obese mice were higher than in mice of normal weight. Moreover, IL-5 and IL-6 significantly enhanced the expression levels of S100A8 and S100A9 in MDSCs. When compared with the levels in mice of normal weight, the expression levels of S100A8 and S100A9 in the MDSCs of OB/OB mice were also higher within the tumor microenvironment. The infiltration of MDSCs in ovarian cancer was found to be positively correlated with the expression levels of IL-6. The IL-6 expression levels in ovarian cancer tissue are positively correlated with the expression levels of S100A8 and S100A9, which is consistent with the results of previous animal experiments. Finally, we found that LMT28 can suppress the tumor growth by inhibiting IL-6. CONCLUSION: Obesity promotes the expression of the MDSC-related immunosuppressive genes S100A8 and S100A9 by upregulating IL-6, thus promoting tumor immune evasion and metastasis in ovarian cancer.

SELECTION OF CITATIONS
SEARCH DETAIL