Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Neurosci Bull ; 37(8): 1119-1134, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33905097

ABSTRACT

Plasticity in the glutamatergic synapses on striatal medium spiny neurons (MSNs) is not only essential for behavioral adaptation but also extremely vulnerable to drugs of abuse. Modulation on these synapses by even a single exposure to an addictive drug may interfere with the plasticity required by behavioral learning and thus produce impairment. In the present work, we found that the negative reinforcement learning, escaping mild foot-shocks by correct nose-poking, was impaired by a single in vivo exposure to 20 mg/kg cocaine 24 h before the learning in mice. Either a single exposure to cocaine or reinforcement learning potentiates the glutamatergic synapses on MSNs expressing the striatal dopamine 1 (D1) receptor (D1-MSNs). However, 24 h after the cocaine exposure, the potentiation required for reinforcement learning was disrupted. Specific manipulation of the activity of striatal D1-MSNs in D1-cre mice demonstrated that activation of these MSNs impaired reinforcement learning in normal D1-cre mice, but inhibition of these neurons reversed the reinforcement learning impairment induced by cocaine. The results suggest that cocaine potentiates the activity of direct pathway neurons in the dorsomedial striatum and this potentiation might disrupt the potentiation produced during and required for reinforcement learning.


Subject(s)
Cocaine , Animals , Cocaine/pharmacology , Corpus Striatum , Dopaminergic Neurons , Mice , Mice, Transgenic , Reinforcement, Psychology
2.
Food Funct ; 12(10): 4544-4555, 2021 May 21.
Article in English | MEDLINE | ID: mdl-33903876

ABSTRACT

Maternal vitamin supplementation has been demonstrated to reduce the risks of a number of neurodevelopmental diseases in children. Autism spectrum disorder (ASD) is a group of neurodevelopment defects with high prevalence but without satisfactory therapy. The present work detected the effects of pregnancy supplementation with folic acid (FA) at different doses on rat models of ASD induced by prenatal exposure to valproic acid (VPA), an anti-epileptic increasing the risk of ASD when administered during pregnancy. The results show that maternal FA supplementation at a high dose (4 mg kg-1) prevented the delay in growth and development, and the deficits in social communicative behaviors and repetitive behaviors, possibly by restoring the increased dendritic spine density and rectifying the over-expression of synaptic proteins associated with excitatory neurons and the lower expression with inhibitory ones. The results provided experimental evidence suggesting a possible role of maternal FA supplementation in preventing ASD.


Subject(s)
Autism Spectrum Disorder/prevention & control , Dietary Supplements , Folic Acid/administration & dosage , Prenatal Exposure Delayed Effects/prevention & control , Valproic Acid/adverse effects , Animals , Autistic Disorder/chemically induced , Behavior, Animal , Disease Models, Animal , Female , Male , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Rats , Rats, Sprague-Dawley , Social Behavior
3.
Brain Res ; 1757: 147312, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33539798

ABSTRACT

Progranulin (PGRN), a secreted glycosylated protein, has been reported to attenuate ischemia-induced cerebral injury through anti-inflammation, attenuation of blood-brain barrier disruption and neuroprotection. However, the effect of PGRN on neurogenesis in the subventricular zone (SVZ) after cerebral ischemia remains unclear. In this study, adult C57BL/6 mice were subjected to permanent middle cerebral artery occlusion (pMCAO), and different doses of recombinant mouse PGRN (r-PGRN, 0.3 ng, 1 ng, 5 ng) were intracerebroventricularly administered 30 min after pMCAO. Results showed that 1 ng r-PGRN markedly reduced infarct volume and rescued functional deficits 24 h after pMCAO. Meanwhile, 1 ng r-PGRN increased SVZ cell proliferation, as shown by a high number of bromodeoxyuridine-positive (BrdU+) cells and Ki-67+ cells in the ischemic ipsilateral SVZ 7 d after pMCAO. Additionally, PGRN increased the percentage of BrdU+/Doublecortin (DCX)+ cells in the ipsilateral SVZ 14 d after pMCAO and increased the percentage of new neurons (BrdU+/NeuN+ cells) in the peri-infarct striatum 28 d after pMCAO, suggesting that PGRN promotes neuronal differentiation. PGRN also upregulated phosphorylation of ERK1/2 and Akt in the ipsilateral SVZ 3 d after pMCAO. Our data indicate that PGRN treatment promotes acute functional recovery; most importantly, it also stimulates neurogenesis in the SVZ, which could be beneficial for long-term recovery after cerebral ischemia. The increase in neurogenesis could be associated with activation of the MAPK/ERK and PI3K/Akt pathways. These results suggest a potential new strategy utilizing PGRN in ischemic stroke therapy.


Subject(s)
Brain Ischemia/drug therapy , Neurogenesis/drug effects , Progranulins/pharmacology , Recovery of Function/drug effects , Animals , Brain Ischemia/physiopathology , Cerebral Ventricles/drug effects , Cerebral Ventricles/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/physiopathology , Lateral Ventricles/drug effects , Lateral Ventricles/metabolism , Male , Mice, Inbred C57BL , Neurogenesis/physiology , Neurons/drug effects , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL