Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Biol Endocrinol ; 20(1): 100, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35821045

ABSTRACT

Insulin-like growth factor-binding protein-5 (IGFBP-5) has recently been shown to alter the reproductive capacity by regulating insulin-like growth factor (IGF) bioavailability or IGF-independent effects. The present study aimed to investigate the effect and mechanism of IGFBP-5 on the onset of puberty in female rats. Immunofluorescence and real-time quantitative PCR were used to determine the expression and location of IGFBP-5 mRNA and protein distribution in the infant's hypothalamus-pituitary-ovary (HPO) axis prepuberty, peripuberty, puberty and adult female rats. Prepubertal rats with IGFBP-5 intracerebroventricular (ICV) were injected to determine the puberty-related genes expression and the concentrations of reproductive hormones. Primary hypothalamic cells were treated with IGFBP-5 to determine the expression of puberty-related genes and the Akt and mTOR proteins. Results showed that Igfbp-5 mRNA and protein were present on the HPO axis. The addition of IGFBP-5 to primary hypothalamic cells inhibited the expression of Gnrh and Igf-1 mRNAs (P < 0.05) and increased the expression of AKT and mTOR protein (P < 0.01). IGFBP-5 ICV-injection delayed the onset of puberty, reduced Gnrh, Igf-1, and Fshß mRNAs, and decreased the concentrations of E2, P4, FSH,serum LH levels and the ovaries weight (P < 0.05). More corpus luteum and fewer primary follicles were found after IGFBP-5 injection (P < 0.05).


Subject(s)
Insulin-Like Growth Factor Binding Protein 5 , Puberty , Animals , Female , Gonadotropin-Releasing Hormone/metabolism , Insulin-Like Growth Factor Binding Protein 5/biosynthesis , Insulin-Like Growth Factor Binding Protein 5/genetics , Proto-Oncogene Proteins c-akt/metabolism , Puberty/genetics , Puberty/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats
2.
Theriogenology ; 176: 137-148, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34607132

ABSTRACT

In the present study, we evaluated how Ptprn-2 (encoding tyrosine phosphatase, receptor type, N2 polypeptide protein) affects the onset of puberty in female rats. We evaluated the expression of Ptprn-2 mRNA and protein in the hypothalamus-pituitary-ovary axis of female rats using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunofluorescence at infancy, prepuberty, puberty, peripuberty, and adulthood. We evaluated the effects of Ptprn-2 gene knockdown on different aspects of reproduction-related biology in female rats, including the expression levels of puberty-related genes in vivo and in vitro, the time to onset of puberty, the concentration of serum reproductive hormones, the morphology of ovaries, and the ultrastructure of pituitary gonadotropin cells. Our results demonstrated that PTPRN-2 was primarily distributed in the arcuate nucleus (ARC), periventricular nucleus (PeN), adenohypophysis, and the ovarian follicular theca, stroma, and granulosa cells of female rats at various stages. Ptprn-2 mRNA levels significantly varied between peripuberty and puberty (P < 0.05) in the hypothalamus and pituitary gland. In hypothalamic cells, Ptprn-2 knockdown decreased the expression of Ptprn-2 and Rfrp-3 mRNA (P < 0.05) and increased the levels of Gnrh and Kiss-1 mRNA (P < 0.05). Ptprn-2 knockdown in the hypothalamus resulted in delayed vaginal opening compared to the control group (n = 12, P < 0.01), and Ptprn-2, Gnrh, and Kiss-1 mRNA levels (P < 0.05) all decreased, while the expression of Igf-1 (P < 0.05) and Rfrp-3 mRNA (P < 0.01) increased. The concentrations of FSH and P4 in the serum of Ptprn-2 knockdown rats were lower than in control animals (P < 0.05). Large transverse perimeters and longitudinal perimeters (P < 0.05) were found in the ovaries of Ptprn-2 knockdown rats. There were fewer large secretory particles from gonadotropin cells in adenohypophysis tissue of the Ptprn-2 knockdown group compared to the control group. This indicates that Ptprn-2 knockdown can regulate levels of Gnrh, Kiss-1, and Rfrp-3 mRNA in the hypothalamus, regulate the concentration of serum FSH and P4, and alter the morphology of ovarian and gonadotropin cells, delaying the onset of puberty in female rats.


Subject(s)
Gonadotropin-Releasing Hormone , Sexual Maturation , Animals , Female , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Kisspeptins/genetics , Pituitary Gland/metabolism , Rats , Rats, Sprague-Dawley , Receptor-Like Protein Tyrosine Phosphatases, Class 8
3.
Animals (Basel) ; 10(4)2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32230949

ABSTRACT

This study explored the role of γ-aminobutyric acid transaminase (GABA-T) in the puberty and reproductive performance of female rats. Immunofluorescence technique, quantitative real-time PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the distribution of GABA-T and the expression of genes and hormones in female rats, respectively. The results showed that GABA-T was mainly distributed in the arcuate nucleus (ARC), paraventricular nucleus (PVN) and periventricular nucleus (PeN) of the hypothalamus, and in the adenohypophysis, ovarian granulosa cells and oocytes. Abat mRNA level at 28 d was lowest in the hypothalamus and the pituitary; at puberty, it was lowest in the ovary. Abat mRNA level was highest in adults in the hypothalamus; at infancy and puberty, it was highest in the pituitary; and at 21 d it was highest in the ovary. After vigabatrin (GABA-T irreversible inhibitor) was added to hypothalamus cells, the levels of Abat mRNA and Rfrp-3 mRNA were significantly reduced, but Gnrh mRNA increased at the dose of 25 and 50 µg/mL; Kiss1 mRNA was significantly increased but Gabbr1 mRNA was reduced at the 50 µg/mL dose. In prepubertal rats injected with vigabatrin, puberty onset was delayed. Abat mRNA, Kiss1 mRNA and Gnrh mRNA levels were significantly reduced, but Rfrp-3 mRNA level increased in the hypothalamus. Vigabatrin reduced the concentrations of GABA-T, luteinizing hormone (LH) and progesterone (P4), and the ovarian index. Lactation performance was reduced in adult rats with vigabatrin treatment. Four hours after vigabatrin injection, the concentrations of GABA-T and LH were significantly reduced in adult and 25 d rats, but follicle-stimulating hormone (FSH) increased in 25 d rats. In conclusion, GABA-T affects the reproductive function of female rats by regulating the levels of Gnrh, Kiss1 and Rfrp-3 in the hypothalamus as well as the concentrations of LH and P4.

SELECTION OF CITATIONS
SEARCH DETAIL