Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Adv ; 9(13): eabq7884, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37000884

ABSTRACT

High conductivity anomalies in the shallow mantle are frequently attributed to minor partial melt (basalt or carbonatite) in the olivine-dominated peridotites. Conductivity of a melt-mineral mixture depends on the configuration of melt that could be affected by grain size of the constitutive mineral(s), but this has rarely been explored. Here, we provide experimental evidence using a conductive carbonatite analog and olivine that the bulk conductivity decreases systematically with increasing olivine grain size. The required amount of melt for producing the geophysically resolved high conductivities in the asthenosphere is much greater than previously assumed. We suggest that the effect of partial melt on many conductive regions in the asthenosphere is small. Instead, the electrical anomalies (especially those away from mid-ocean ridges) originate more likely from subsolidus solid assemblages in the upper mantle. This reconciles well the geochemical and petrological constraints of the shallow mantle with its geophysically determined electrical properties.

2.
Sci Rep ; 11(1): 10588, 2021 May 19.
Article in English | MEDLINE | ID: mdl-34012106

ABSTRACT

Water (H2O) as one of the most abundant fluids present in Earth plays crucial role in the generation and transport of magmas in the interior. Though hydrous silicate melts have been studied extensively, the experimental data are confined to relatively low pressures and the computational results are still rare. Moreover, these studies imply large differences in the way water influences the physical properties of silicate magmas, such as density and electrical conductivity. Here, we investigate the equation of state, speciation, and transport properties of water dissolved in Mg1-xFexSiO3 and Mg2(1-x)Fe2xSiO4 melts (for x = 0 and 0.25) as well as in its bulk (pure) fluid state over the entire mantle pressure regime at 2000-4000 K using first-principles molecular dynamics. The simulation results allow us to constrain the partial molar volume of the water component in melts along with the molar volume of pure water. The predicted volume of silicate melt + water solution is negative at low pressures and becomes almost zero above 15 GPa. Consequently, the hydrous component tends to lower the melt density to similar extent over much of the mantle pressure regime irrespective of composition. Our results also show that hydrogen diffuses fast in silicate melts and enhances the melt electrical conductivity in a way that differs from electrical conduction in the bulk water. The speciation of the water component varies considerably from the bulk water structure as well. Water is dissolved in melts mostly as hydroxyls at low pressure and as -O-H-O-, -O-H-O-H- and other extended species with increasing pressure. On the other hand, the pure water behaves as a molecular fluid below 15 GPa, gradually becoming a dissociated fluid with further compression. On the basis of modeled density and conductivity results, we suggest that partial melts containing a few percent of water may be gravitationally trapped both above and below the upper mantle-transition region. Moreover, such hydrous melts can give rise to detectable electrical conductance by means of electromagnetic sounding observations.

3.
Sci Rep ; 8(1): 11884, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-30089877

ABSTRACT

Plate tectonics is one mode of mantle convection that occurs when the surface layer (the lithosphere) is relatively weak. When plate tectonics operates on a terrestrial planet, substantial exchange of materials occurs between planetary interior and its surface. This is likely a key in maintaining the habitable environment on a planet. Therefore it is essential to understand under which conditions plate tectonics operates on a terrestrial planet. One of the puzzling observations in this context is the fact that plate tectonics occurs on Earth but not on Venus despite their similar size and composition. Factors such as the difference in water content or in grain-size have been invoked, but these models cannot easily explain the contrasting tectonic styles between Earth and Venus. We propose that strong dynamic weakening in friction is a key factor. Fast unstable fault motion is found in cool Earth, while slow and stable fault motion characterizes hot Venus, leading to substantial dynamic weakening on Earth but not on Venus. Consequently, the tectonic plates are weak on Earth allowing for their subduction, while the strong plates on Venus promote the stagnant lid regime of mantle convection.

4.
Nature ; 538(7625): 373-377, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27723743

ABSTRACT

Water, the most abundant volatile in Earth's interior, preserves the young surface of our planet by catalysing mantle convection, lubricating plate tectonics and feeding arc volcanism. Since planetary accretion, water has been exchanged between the hydrosphere and the geosphere, but its depth distribution in the mantle remains elusive. Water drastically reduces the strength of olivine and this effect can be exploited to estimate the water content of olivine from the mechanical response of the asthenosphere to stress perturbations such as the ones following large earthquakes. Here, we exploit the sensitivity to water of the strength of olivine, the weakest and most abundant mineral in the upper mantle, and observations of the exceptionally large (moment magnitude 8.6) 2012 Indian Ocean earthquake to constrain the stratification of water content in the upper mantle. Taking into account a wide range of temperature conditions and the transient creep of olivine, we explain the transient deformation in the aftermath of the earthquake that was recorded by continuous geodetic stations along Sumatra as the result of water- and stress-activated creep of olivine. This implies a minimum water content of about 0.01 per cent by weight-or 1,600 H atoms per million Si atoms-in the asthenosphere (the part of the upper mantle below the lithosphere). The earthquake ruptured conjugate faults down to great depths, compatible with dry olivine in the oceanic lithosphere. We attribute the steep rheological contrast to dehydration across the lithosphere-asthenosphere boundary, presumably by buoyant melt migration to form the oceanic crust.

5.
Science ; 351(6269): 144-7, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26721681

ABSTRACT

Rheological properties of the lower mantle have strong influence on the dynamics and evolution of Earth. By using the improved methods of quantitative deformation experiments at high pressures and temperatures, we deformed a mixture of bridgmanite and magnesiowüstite under the shallow lower mantle conditions. We conducted experiments up to about 100% strain at a strain rate of about 3 × 10(-5) second(-1). We found that bridgmanite is substantially stronger than magnesiowüstite and that magnesiowüstite largely accommodates the strain. Our results suggest that strain weakening and resultant shear localization likely occur in the lower mantle. This would explain the preservation of long-lived geochemical reservoirs and the lack of seismic anisotropy in the majority of the lower mantle except the boundary layers.

6.
Article in English | MEDLINE | ID: mdl-24621956

ABSTRACT

One of the difficulties of the current giant impact model for the origin of the Moon is to explain the marked similarity in the isotopic compositions and the substantial differences in the major element chemistry. Physics of shock heating is analyzed to show that the degree of heating is asymmetric between the impactor and the target, if the target (the proto-Earth) had a magma-ocean but the impactor did not. The magma ocean is heated much more than the solid impactor and the vapor-rich jets come mainly from the magma-ocean from which the Moon might have been formed. In this scenario, the similarity and differences in the composition between the Moon and Earth would be explained as a natural consequence of a collision in the later stage of planetary formation. Including the asymmetry in shock heating is the first step toward explaining the chemical composition of the Moon.


Subject(s)
Hot Temperature , Moon , Physical Phenomena , Mechanical Phenomena , Models, Theoretical
7.
Proc Natl Acad Sci U S A ; 110(41): 16355-60, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-24067645

ABSTRACT

For plate tectonics to operate on a terrestrial planet, the surface layer (the lithosphere) must have a modest strength (Earth, ≤ 200 MPa), but a standard strength profile based on olivine far exceeds this threshold value. Consequently, it is essential to identify mechanisms that reduce the strength of the lithosphere on Earth. Here we report results of high-strain laboratory deformation experiments on a representative olivine-orthopyroxene composition that show the addition of orthopyroxene substantially reduces the strength in the ductile regime within a certain temperature window. The reduction in strength is associated with the formation of small orthopyroxene and olivine grains. Our samples show heterogeneous microstructures similar to those observed in natural peridotites in shear zones: fine-grained regions containing both orthopyroxene and olivine that form interconnected bands where a large fraction of strain is accommodated. A model is developed to apply these results to geological conditions. Such a model, combined with our experimental observations, suggests that orthopyroxene may play a key role in the plastic deformation of the lithosphere in a critical temperature range, leading to long-term weakening associated with strain localization in the lithosphere.


Subject(s)
Evolution, Planetary , Geological Phenomena , Minerals/chemistry , Models, Theoretical , Rheology , Temperature
8.
Nature ; 492(7428): 243-6, 2012 Dec 13.
Article in English | MEDLINE | ID: mdl-23235879

ABSTRACT

The core-mantle boundary of Earth is a region where iron-rich liquids interact with oxides and silicates in the mantle. Iron enrichment may occur at the bottom of the mantle, leading to low seismic-wave velocities and high electrical conductivity, but plausible physical processes of iron enrichment have not been suggested. Diffusion-controlled iron enrichment is inefficient because it is too slow, although the diffusion can be fast enough along grain boundaries for some elements. More fundamentally, experimental studies and geophysical observations show that the core is under-saturated with oxygen, implying that the mantle next to the core should be depleted in FeO. Here we show that (Mg,Fe)O in contact with iron-rich liquids leads to a morphological instability, causing blobs of iron-rich liquid to penetrate the oxide. This morphological instability is generated by the chemical potential gradient between two materials when they are not in bulk chemical equilibrium, and should be a common process in Earth's interior. Iron-rich melt could be transported 50 to 100 kilometres away from the core-mantle boundary by this mechanism, providing an explanation for the iron-rich regions in the mantle.

9.
Proc Jpn Acad Ser B Phys Biol Sci ; 85(10): 466-75, 2009.
Article in English | MEDLINE | ID: mdl-20009379

ABSTRACT

Electrical conductivity of minerals is sensitive to water content and hence can be used to infer the water content in the mantle. However, previous studies to infer the water content in the upper mantle were based on pure olivine model of the upper mantle. Influence of other minerals particularly that of orthopyroxene needs to be included to obtain a better estimate of water content in view of the high water solubility in this mineral. Here we report new results of electrical conductivity measurements on orthopyroxene, and apply these results to estimate the water content of the upper mantle of Earth. We found that the electrical conductivity of orthopyroxene is enhanced by the addition of water in a similar way as other minerals such as olivine and pyrope garnet. Using these new results, we calculate the electrical conductivity of pyrolite mantle as a function of water content and temperature incorporating the temperature and water fugacity-dependent hydrogen partitioning. Reported values of asthenosphere conductivity of 4x10(-2)-10(-1) S/m corresponds to the water content of 0.01-0.04 wt%, a result in good agreement with the petrological model of the upper mantle.


Subject(s)
Earth, Planet , Electric Conductivity , Minerals/chemistry , Water/analysis , Water/chemistry , Iron Compounds/chemistry , Magnesium Compounds/chemistry , Silicates/chemistry , Spectroscopy, Fourier Transform Infrared , Temperature
10.
Nature ; 443(7114): 977-80, 2006 Oct 26.
Article in English | MEDLINE | ID: mdl-17066032

ABSTRACT

It is well known that water (as a source of hydrogen) affects the physical and chemical properties of minerals--for example, plastic deformation and melting temperature--and accordingly plays an important role in the dynamics and geochemical evolution of the Earth. Estimating the water content of the Earth's mantle by direct sampling provides only a limited data set from shallow regions (<200 km depth). Geophysical observations such as electrical conductivity are considered to be sensitive to water content, but there has been no experimental study to determine the effect of water on the electrical conductivity of olivine, the most abundant mineral in the Earth's mantle. Here we report a laboratory study of the dependence of the electrical conductivity of olivine aggregates on water content at high temperature and pressure. The electrical conductivity of synthetic polycrystalline olivine was determined from a.c. impedance measurements at a pressure of 4 GPa for a temperature range of 873-1,273 K for water contents of 0.01-0.08 wt%. The results show that the electrical conductivity is strongly dependent on water content but depends only modestly on temperature. The water content dependence of conductivity is best explained by a model in which electrical conduction is due to the motion of free protons. A comparison of the laboratory data with geophysical observations suggests that the typical oceanic asthenosphere contains approximately 10(-2) wt% water, whereas the water content in the continental upper mantle is less than approximately 10(-3) wt%.

11.
Nature ; 438(7067): 488-91, 2005 Nov 24.
Article in English | MEDLINE | ID: mdl-16306990

ABSTRACT

The chemical evolution of the Earth and the terrestrial planets is largely controlled by the density of silicate melts. If melt density is higher than that of the surrounding solid, incompatible elements dissolved in the melt will be sequestered in the deep mantle. Previous studies on dry (water-free) melts showed that the density of silicate melts can be higher than that of surrounding solids under deep mantle conditions. However, melts formed under deep mantle conditions are also likely to contain some water, which will reduce the melt density. Here we present data constraining the density of hydrous silicate melt at the conditions of approximately 410 km depth. We show that the water in the silicate melt is more compressible than the other components, and therefore the effect of water in reducing melt density is markedly diminished under high-pressure conditions. Our study indicates that there is a range of conditions under which a (hydrous) melt could be trapped at the 410-km boundary and hence incompatible elements could be sequestered in the deep mantle, although these conditions are sensitive to melt composition as well as the composition of the surrounding mantle.

12.
Nature ; 434(7034): 746-9, 2005 Apr 07.
Article in English | MEDLINE | ID: mdl-15815625

ABSTRACT

The distribution of water in the Earth's interior reflects the way in which the Earth has evolved, and has an important influence on its material properties. Minerals in the transition zone of the Earth's mantle (from approximately 410 to approximately 660 km depth) have large water solubility, and hence it is thought that the transition zone might act as a water reservoir. When the water content of the transition zone exceeds a critical value, upwelling flow might result in partial melting at approximately 410 km, which would affect the distribution of certain elements in the Earth. However, the amount of water in the transition zone has remained unknown. Here we determined the effects of water and temperature on the electrical conductivity of the minerals wadsleyite and ringwoodite to infer the water content of the transition zone. We find that the electrical conductivity of these minerals depends strongly on water content but only weakly on temperature. By comparing these results with geophysically inferred conductivity, we infer that the water content in the mantle transition zone varies regionally, but that its value in the Pacific is estimated to be approximately 0.1-0.2 wt%. These values significantly exceed the estimated critical water content in the upper mantle, suggesting that partial melting may indeed occur at approximately 410 km depth, at least in this region.

13.
Nature ; 425(6953): 39-44, 2003 Sep 04.
Article in English | MEDLINE | ID: mdl-12955133

ABSTRACT

Because of their distinct chemical signatures, ocean-island and mid-ocean-ridge basalts are traditionally inferred to arise from separate, isolated reservoirs in the Earth's mantle. Such mantle reservoir models, however, typically satisfy geochemical constraints, but not geophysical observations. Here we propose an alternative hypothesis that, rather than being divided into isolated reservoirs, the mantle is filtered at the 410-km-deep discontinuity. We propose that, as the ascending ambient mantle (forced up by the downward flux of subducting slabs) rises out of the high-water-solubility transition zone (between the 660 km and 410 km discontinuities) into the low-solubility upper mantle above 410 km, it undergoes dehydration-induced partial melting that filters out incompatible elements. The filtered, dry and depleted solid phase continues to rise to become the source material for mid-ocean-ridge basalts. The wet, enriched melt residue may be denser than the surrounding solid and accordingly trapped at the 410 km boundary until slab entrainment returns it to the deeper mantle. The filter could be suppressed for both mantle plumes (which therefore generate wetter and more enriched ocean-island basalts) as well as the hotter Archaean mantle (thereby allowing for early production of enriched continental crust). We propose that the transition-zone water-filter model can explain many geochemical observations while avoiding the major pitfalls of invoking isolated mantle reservoirs.

14.
Nature ; 416(6878): 310-4, 2002 Mar 21.
Article in English | MEDLINE | ID: mdl-11907574

ABSTRACT

Seismological observations reveal highly anisotropic patches at the bottom of the Earth's lower mantle, whereas the bulk of the mantle has been observed to be largely isotropic. These patches have been interpreted to correspond to areas where subduction has taken place in the past or to areas where mantle plumes are upwelling, but the underlying cause for the anisotropy is unknown-both shape-preferred orientation of elastically heterogeneous materials and lattice-preferred orientation of a homogeneous material have been proposed. Both of these mechanisms imply that large-strain deformation occurs within the anisotropic regions, but the geodynamic implications of the mechanisms differ. Shape-preferred orientation would imply the presence of large elastic (and hence chemical) heterogeneity whereas lattice-preferred orientation requires deformation at high stresses. Here we show, on the basis of numerical modelling incorporating mineral physics of elasticity and development of lattice-preferred orientation, that slab deformation in the deep lower mantle can account for the presence of strong anisotropy in the circum-Pacific region. In this model-where development of the mineral fabric (the alignment of mineral grains) is caused solely by solid-state deformation of chemically homogeneous mantle material-anisotropy is caused by large-strain deformation at high stresses, due to the collision of subducted slabs with the core-mantle boundary.

SELECTION OF CITATIONS
SEARCH DETAIL