Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 22(11)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072504

ABSTRACT

The antioxidant potential (capacity and activity) of aqueous fullerene dispersions (AFD) of non-functionalized C60, C70, and Gd@C82 endofullerene (in micromolar concentration range) was estimated based on chemiluminescence measurements of the model of luminol and generation of organic radicals by 2,2'-azobis(2-amidinopropane) dihydrochloride (ABAP). The antioxidant capacity was estimated by the TRAP method, from the concentration of half-suppression, and from the suppression area in the initial period. All three approaches agree and show that the antioxidant capacity of AFDs increased in the order Gd@C82 < C70 < C60. Mathematical modeling of the long-term kinetics data was used for antioxidant activity estimation. The effect of C60 and C70 is found to be quenching of the excited product of luminol with ABAP-generated radical and not an actual antioxidant effect; quenching constants differ insignificantly. Apart from quenching with a similar constant, the AFD of Gd@C82 exhibits actual antioxidant action. The antioxidant activity in Gd@C82 is 300-fold higher than quenching constants.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Fullerenes/chemistry , Fullerenes/pharmacology , Luminescence , Solutions , Spectrometry, Fluorescence
2.
Ultrason Sonochem ; 73: 105533, 2021 May.
Article in English | MEDLINE | ID: mdl-33799110

ABSTRACT

A green, scalable, and sustainable approach to prepare aqueous fullerene dispersions (AFD) C60, C70, endohedral metallofullerene Gd@C82, and their derivatives C60Cl6, C70Cl10, and supramolecular and ester-like derivatives, 10 fullerene species total, is proposed. For the first time, an immersed ultrasonic probe was used to preparing dispersions for pristine fullerenes without addends. Both ultrasound-assisted solvent-exchange and direct sonication techniques for AFD preparation using an immersed probe were tested. The average time for AFD preparation decreases 10-15 times compared to an ultrasound-bath-assisted technique, while final fullerene concentrations in AFDs remained at tens of ppm (up to 80 ppm). The aqueous dispersions showed long-term stability, a negatively charged surface with a zeta potential up to -32 mV with an average nanocluster diameter of no more than 180 nm. The total anionic and cationic compositions of samples were found by inductively coupled plasma atomic emission spectroscopy and chromatographic techniques. The highlights and challenges of using an ultrasound probe for AFD production are discussed.

3.
Molecules ; 25(11)2020 May 28.
Article in English | MEDLINE | ID: mdl-32481516

ABSTRACT

Endohedral metal fullerene are potential nanopharmaceuticals for MRI; thus, it is important to study their effect on reactive oxygen species (ROS) homeostasis. Superoxide anion radical is one of the key ROS. The reactivity of aqueous dispersions of pristine (non-functionalized) fullerenes and Gd@C82 endofullerene have been studied with respect to superoxide in the xanthine/xanthine oxidase chemiluminescence system. It was found that C60 and C70 in aqueous dispersions react with superoxide as scavengers by a similar mechanism; differences in activity are determined by cluster parameters, primarily the concentration of available, acting molecules at the surface. Gd endofullerene is characterized by a significantly (one-and-a-half to two orders of magnitude) higher reactivity with respect to C60 and C70 and is likely to exhibit nanozyme (SOD-mimic) properties, which can be accounted for by the nonuniform distribution of electron density of the fullerene cage due to the presence of the endohedral atom; however, in the cell model, Gd@C82 showed the lowest activity compared to C60 and C70, which can be accounted for by its higher affinity for the lipid phase.


Subject(s)
Fullerenes/chemistry , Superoxides/chemistry , Luminescence , Reactive Oxygen Species/metabolism , Superoxide Dismutase/chemistry , Superoxide Dismutase/metabolism , Water/chemistry
4.
Chemphyschem ; 14(8): 1670-5, 2013 Jun 03.
Article in English | MEDLINE | ID: mdl-23553876

ABSTRACT

We show that electron transfer from the perchlorotriphenylmethide anion (PTM(-)) to Y@C82(C2v) is an instantaneous process, suggesting potential applications for using PTM(-) to perform redox titrations of numerous endohedral metallofullerenes. The first representative of a Y@C82-based salt containing the complex cation was prepared by treating Y@C82(C2v) with the [K(+)([18]crown-6)]PTM(-) salt. The synthesis developed involves the use of the [K(+)([18]crown-6)]PTM(-) salt as a provider of both a complex cation and an electron-donating anion that is able to reduce Y@C82 C2v). For the first time, the molar absorption coefficients for neutral and anionic forms of the pure isomer of Y@C82(C2v) were determined in organic solvents with significantly different polarities.


Subject(s)
Fullerenes/chemistry , Yttrium/chemistry , Anions/chemistry , Electron Spin Resonance Spectroscopy , Electron Transport , Salts/chemistry
5.
J Am Chem Soc ; 132(33): 11709-21, 2010 Aug 25.
Article in English | MEDLINE | ID: mdl-20666403

ABSTRACT

The charged states of C(60)(CF(3))(2n) (2n = 2-10) derivatives have been studied by electron spin resonance (ESR) and vis-near-infrared (NIR) spectroelectrochemistry. The anion radicals and diamagnetic dianions were furthermore described by theoretical calculations. The ESR spectra of anion radicals exhibit complex patterns due to multiple CF(3) groups. Their interpretation is accomplished by DFT calculations with B3LYP functional. It is shown that calculations provide reliable results when the extended aug-cc-pCVTZ basis set is used for fluorine atoms; however, specially tailored basis sets such as EPR-III also give very similar results with only a fraction of the computational cost. Absorption spectra of the anions exhibit NIR absorption bands, whose assignment is provided by time-dependent DFT calculations.

6.
Phys Chem Chem Phys ; 12(31): 8863-9, 2010 Aug 21.
Article in English | MEDLINE | ID: mdl-20535405

ABSTRACT

The EPR spectrum of the Y@C(82) molecules isolated in solid argon matrix was recorded for the first time at a temperature of 5 K. The isotropic hyperfine coupling constant (hfcc) A(iso) = 0.12 +/- 0.02 mT on the nucleus (89)Y as derived from the EPR spectrum is found in more than two times greater than that obtained in previous EPR measurements in liquid solutions. Comparison of the measured hfcc on a metal atom with that predicted by density-functional theory calculations (PBE/L22) indicate that relativistic method provides good agreement between experiment in solid argon and theory. Analysis of the DFT calculated dipole-dipole hf-interaction tensor and electron spin distribution in the endometallofullerenes with encaged group 3 metal atoms Sc, Y and La has been performed. It shows that spin density on the scandium atom represents the Sc d(yz) orbital lying in the symmetry plane of the C(2v) fullerene isomer and interacting with two carbon atoms located in the para-position on the fullerene hexagon. In contrast, the configuration of electron spin density on the heavier atoms, Y and La, is associated with the hybridized orbital formed by interaction of the metal d(yz) and p(y) electronic orbitals.

7.
Chemistry ; 16(18): 5343-53, 2010 May 10.
Article in English | MEDLINE | ID: mdl-20209515

ABSTRACT

The decakis(trifluoromethyl)fullerene C(1)-C(70)(CF(3))(10), in which the CF(3) groups are arranged on a para(7)-meta-para ribbon of C(6)(CF(3))(2) edge-sharing hexagons, and which has now been prepared in quantities of hundreds of milligrams, was reacted under standard Bingel-Hirsch conditions with a bis-pi-extended tetrathiafulvalene (exTTF) malonate derivative to afford a single exTTF(2)-C(70)(CF(3))(10) regioisomer in 80 % yield based on consumed starting material. The highly soluble hybrid was thoroughly characterized by using 1D (1)H, (13)C, and (19)F NMR, 2D NMR, and UV/Vis spectroscopy; matrix-assisted laser desorption ionization (MALDI) mass spectrometry; and electrochemistry. The cyclic voltammogram of the exTTF(2)-C(70)(CF(3))(10) dyad revealed an irreversible second reduction process, which is indicative of a typical retro-Bingel reaction; whereas the usual phenomenon of exTTF inverted potentials (E1ox>E2ox), resulting in a single, two-electron oxidation process, was also observed. Steady-state and time-resolved photolytic techniques demonstrated that the C(1)-C(70)(CF(3))(10) singlet excited state is subject to a rapid electron-transfer quenching. The resulting charge-separated states were identified by transient absorption spectroscopy, and radical pair lifetimes of the order of 300 ps in toluene were determined. The exTTF(2)-C(70)(CF(3))(10) dyad represents the first example of exploitation of the highly soluble trifluoromethylated fullerenes for the construction of systems able to mimic the photosynthetic process, and is therefore of interest in the search for new materials for photovoltaic applications.


Subject(s)
Fullerenes/chemistry , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/chemical synthesis , Oxidants/chemistry , Absorption , Cyclization , Electrochemistry , Electron Transport , Models, Molecular , Molecular Structure , Oxidation-Reduction , Spectrum Analysis , Stereoisomerism
8.
J Org Chem ; 74(17): 6902-5, 2009 Sep 04.
Article in English | MEDLINE | ID: mdl-19663505

ABSTRACT

The Diels-Alder reaction of C(1)-C(70)(CF(3))(10) and 3,6-dimethoxy-1,2-quinodimethane leads regioselectively to the formation of a new cycloadduct that has been fully characterized by spectroscopic and electrochemical methods as well as by X-ray diffraction.

9.
J Am Chem Soc ; 130(40): 13471-89, 2008 Oct 08.
Article in English | MEDLINE | ID: mdl-18788799

ABSTRACT

Adding 1% of the metallic elements cerium, lanthanum, and yttrium to graphite rod electrodes resulted in different amounts of the hollow higher fullerenes (HHFs) C76-D2(1), C78-C2v(2), and C78-C2v(3) in carbon-arc fullerene-containing soots. The reaction of trifluoroiodomethane with these and other soluble HHFs at 520-550 degrees C produced 21 new C76,78,84,90(CF3)n derivatives (n = 6, 8, 10, 12, 14). The reaction with C76-D2(1) produced an abundant isomer of C2-(C76-D2(1))(CF3)10 plus smaller amounts of an isomer of C1-(C76-D2(1))(CF3)6, two isomers of C1-(C76-D2(1))(CF3)8, four isomers of C1-(C76-D2(1))(CF3)10, and one isomer of C2-(C76-D2(1))(CF3)12. The reaction with a mixture of C78-D3(1), C78-C2v(2), and C78-C2v(3) produced the previously reported isomer C1-(C78-C2v(3))(CF3)12 (characterized by X-ray crystallography in this work) and the following new compounds: C2-(C78-C2v(3))(CF3)8; C2-(C78-D3(1))(CF3)10 and C(s)-(C78-C2v(2))(CF3)10 (both characterized by X-ray crystallography in this work); C2-(C78-C2v(2))(CF3)10; and C1-C78(CF3)14 (cage isomer unknown). The reaction of a mixture of soluble higher fullerenes including C84 and C90 produced the new compounds C1-C84(CF3)10 (cage isomer unknown), C1-(C84-C2(11))(CF3)12 (X-ray structure reported recently), D2-(C84-D2(22))(CF3)12, C2-(C84-D2(22))(CF3)12, C1-C84(CF3)14 (cage isomer unknown), C1-(C90-C1(32))(CF3)12, and another isomer of C1-C90(CF3)12 (cage isomer unknown). All compounds were studied by mass spectrometry, (19)F NMR spectroscopy, and DFT calculations. An analysis of the addition patterns of these compounds and three other HHF(X) n compounds with bulky X groups has led to the discovery of the following addition-pattern principle for HHFs: In general, the most pyramidal cage C(sp(2)) atoms in the parent HHF, which form the most electron-rich and therefore the most reactive cage C-C bonds as far as 1,2-additions are concerned, are not the cage C atoms to which bulky substituents are added. Instead, ribbons of edge-sharing p-C6(X)2 hexagons, with X groups on less pyramidal cage C atoms, are formed, and the otherwise "most reactive" fullerene double bonds remain intact.

11.
Chemistry ; 14(1): 107-21, 2008.
Article in English | MEDLINE | ID: mdl-17972264

ABSTRACT

Eight new C70(CF3)n derivatives (n=2, 6, 10, 12) have been synthesized and characterized by UV/Vis and 19F NMR spectroscopy, cyclic voltammetry, and quantum chemical calculations at the DFT level of theory. Nine previously known derivatives of C70(CF3)n with n=2-12 were also studied by cyclic voltammetry (and seven of them by UV/Vis spectroscopy for the first time). Most of the 17 compounds exhibited two or three reversible reductions at scan rates from 20 mV s(-1) up to 5.0 V s(-1). In general, reduction potentials for the 0/- couple are shifted anodically relative to the C70 0/-) couple. However, the 0/- E1/2 values for a given composition are strongly dependent on the addition pattern of the CF3 groups. The data show that the addition pattern is as important, if not more important in some cases, than the number of substituents, n, in determining E1/2 values. An analysis of the DFT-predicted LUMOs indicates that addition patterns that have non-terminal double bonds in pentagons result in derivatives that are strong electron acceptors.

12.
J Am Chem Soc ; 129(37): 11551-68, 2007 Sep 19.
Article in English | MEDLINE | ID: mdl-17718489

ABSTRACT

The frontier orbitals of 22 isolated and characterized C(60)(CF(3))(n) derivatives, including seven reported here for the first time, have been investigated by electronic spectroscopy (n = 2 [1], 4 [1], 6 [2], 8 [5], 10 [6], 12 [3]; the number of isomers for each composition is shown in square brackets) fluorescence spectroscopy (n = 10 [4]), cyclic voltammetry under air-free conditions (all compounds with n

13.
Chem Commun (Camb) ; (16): 1650-2, 2007 Apr 28.
Article in English | MEDLINE | ID: mdl-17530089

ABSTRACT

The title compound, prepared from C(60) and CF(3)I at 500 degrees C, exhibits an unusual fullerene(X)12 addition pattern that is 40 kJ mol(-1) less stable than the previously reported C(60)(CF(3))12 isomer.

14.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 1): o159, 2007 Dec 06.
Article in English | MEDLINE | ID: mdl-21200724

ABSTRACT

The title compound, C(72)F(36), is one of four isomers of C(60)(CF(3))(12) for which crystal structures have been obtained. The fullerene mol-ecule has an idealized I(h) C(60) core with the 12 CF(3) groups arranged in an asymmetric fashion on two ribbons of edge-sharing C(6)(CF(3))(2) hexa-gons, a para-meta-para-para-para-meta-para ribbon and a para-meta-para ribbon, giving an overall pmp(3)mp,pmp structure. There are no cage Csp(3)-Csp(3) bonds. The F atoms of two CF(3) groups are disordered over two positions; the site occupancy factors are 0.85/0.15 and 0.73/0.27. There are intra-molecular F⋯F contacts between pairs of CF(3) groups on the same hexa-gon that range from 2.521 (3) to 2.738 (4) Å.

15.
J Am Chem Soc ; 128(37): 12268-80, 2006 Sep 20.
Article in English | MEDLINE | ID: mdl-16967978

ABSTRACT

Reaction of C(60) with CF(3)I at 550 degrees C, which is known to produce a single isomer of C(60)(CF(3))(2,4,6) and multiple isomers of C(60)(CF(3))(8,10), has now been found to produce an isomer of C(60)(CF(3))(6) with the C(s)-C(60)X(6) skew-pentagonal-pyramid (SPP) addition pattern and an epoxide with the C(s)-C(60)X(4)O variation of the SPP addition pattern, C(s)-C(60)(CF(3))(4)O. The structurally similar epoxide C(s)-C(60)(C(2)F(5))(4)O is one of the products of the reaction of C(60) with C(2)F(5)I at 430 degrees C. The three compounds have been characterized by mass spectrometry, DFT quantum chemical calculations, Raman, visible, and (19)F NMR spectroscopy, and, in the case of the two epoxides, single-crystal X-ray diffraction. The compound C(s)-C(60)(CF(3))(6) is the first [60]fullerene derivative with adjacent R(f) groups that are sufficiently sterically hindered to cause the (DFT-predicted) lengthening of the cage (CF(3))C-C(CF(3)) bond to 1.60 A as well as to give rise to a rare, non-fast-exchange-limit (19)F NMR spectrum at 20 degrees C. The compounds C(s)-C(60)(CF(3))(4)O and C(s)-C(60)(C(2)F(5))(4)O are the first poly(perfluoroalkyl)fullerene derivatives with a non-fluorine-containing exohedral substituent and the first fullerene epoxides known to be stable at elevated temperatures. All three compounds demonstrate that the SPP addition pattern is at least kinetically stable, if not thermodynamically stable, at temperatures exceeding 400 degrees C. The high-temperature synthesis of the two epoxides also indicates that perfluoroalkyl substituents can enhance the thermal stability of fullerene derivatives with other substituents.

16.
Chem Commun (Camb) ; (3): 308-10, 2006 Jan 21.
Article in English | MEDLINE | ID: mdl-16391743

ABSTRACT

The high-temperature reaction of C60 and C2F5I produced poly(perfluoroethyl)fullerenes with unprecedented addition patterns.

18.
J Am Chem Soc ; 127(32): 11497-504, 2005 Aug 17.
Article in English | MEDLINE | ID: mdl-16089480

ABSTRACT

Milligram amounts of the new compounds 1,9- and 1,7-C60F(CF3) (ca. 85:15 mixture of isomers) and C60F3(CF3) were isolated from a high-temperature C60/K2PtF6 reaction mixture and purified to 98 mol % compositional purity by two-dimensional high-performance liquid chromatography using Buckyprep and Buckyclutcher columns. The previously observed compounds C60F5(CF3) and C60F7(CF3) were also purified to 90+ mol % for the first time. Variable-temperature 19F NMR spectra of the mixture of C60F(CF3) isomers and the previously reported mixture of C(s)- and C1-C60F17(CF3) isomers demonstrate for the first time that fullerene(F)n(CF3)m derivatives with adjacent F and CF3 substituents exhibit slow-exchange limit hindered CF3 rotation spectra at -40 +/- 10 degrees C. The experimental and density functional theory (DFT) predicted deltaH++ values for CF3 rotation in 1,9-C60F(CF3) are 46.8(7) and 46 kJ mol(-1), respectively. The DFT-predicted deltaH++ values for 1,7-C60F(CF3), C(s)-C60F17(CF3), and C1-C60F17(CF3) are 20, 44, and 54 kJ mol(-1), respectively. The (> or = 4)J(FF) values from the slow-exchange-limit 19F spectra, which vary from ca. 0 to 48(1) Hz, show that the dominant nuclear spin-spin coupling mechanism is through-space coupling (i.e., direct overlap of fluorine atom lone-pair orbitals) rather than coupling through the sigma-bond framework. The 2J(FF) values within the CF3 groups vary from 107(1) to 126(1) Hz. Collectively, the NMR data provide an unambiguous set of (> or = 4)J(FF) values for three different compounds that can be correlated with DFT-predicted or X-ray diffraction derived distances and angles and an unambiguous set of 2J(FF) values that can serve as an internal standard for all future J(FF) calculations.

19.
J Am Chem Soc ; 127(23): 8362-75, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-15941270

ABSTRACT

A significant improvement in the selectivity of fullerene trifluoromethylation reactions was achieved. Reaction of trifluoroiodomethane with [60]fullerene at 460 degrees C and [70]fullerene at 470 degrees C in a flow reactor led to isolation of cold-zone-condensed mixtures of C60(CF3)n and C70(CF3)n compounds with narrow composition ranges: 6 < or = n < or = 12 for C(60)(CF3)n and 8 < or = n < or = 14 for C70(CF3)n. The predominant products in the C(60) reaction, an estimated 40+ mol % of the cold-zone condensate, were three isomers of C60(CF3)10. Two of these were purified by two-stage HPLC to 80+% isomeric purity. The third isomer was purified by three-stage HPLC to 95% isomeric purity. Thirteen milligrams of this orange-brown compound was isolated (5% overall yield based on C60, and its C1-symmetric structure was determined to be 1,3,7,10,14,17,23,28,31,40-C60(CF3)10 by X-ray crystallography. The CF3 groups are either meta or para to one another on a p-m-p-p-p-m-p-m-p ribbon of edge-sharing C6(CF3)2 hexagons (each pair of adjacent hexagons shares a common CF3 group). The selectivity of the C70 reaction was even higher. The predominant product was a single C70(CF3)10 isomer representing >40 mol % of the cold-zone condensate. Single-stage HPLC led to the isolation of 12 mg of this brown compound in 95% isomeric purity (27% overall yield based on converted C70. The new compounds were characterized by EI or S(8)-MALDI mass spectrometry and 2D-COSY 19F NMR spectroscopy. The NMR data demonstrate that through-space coupling via direct overlap of fluorine orbitals is the predominant contribution to J(FF) values in these and most other fullerene(CF3)n compounds.

SELECTION OF CITATIONS
SEARCH DETAIL