Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 143(25): 2666-2670, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38635757

ABSTRACT

ABSTRACT: Lysyl oxidase (LOX) is a facilitator of extracellular matrix cross-linking. Using newly developed megakaryocyte-specific LOX knockout mice, we show that LOX expressed in these scarce bone marrow cells affects bone volume and collagen architecture in a sex-dependent manner.


Subject(s)
Megakaryocytes , Mice, Knockout , Protein-Lysine 6-Oxidase , Animals , Protein-Lysine 6-Oxidase/metabolism , Protein-Lysine 6-Oxidase/genetics , Megakaryocytes/metabolism , Megakaryocytes/cytology , Mice , Male , Female , Bone and Bones/metabolism , Sex Characteristics , Collagen/metabolism , Gene Deletion , Sex Factors , Extracellular Matrix Proteins
2.
Cells ; 13(6)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38534326

ABSTRACT

Mechanosensation is a fundamental function through which cells sense mechanical stimuli by initiating intracellular ion currents. Ion channels play a pivotal role in this process by orchestrating a cascade of events leading to the activation of downstream signaling pathways in response to particular stimuli. Piezo1 is a cation channel that reacts with Ca2+ influx in response to pressure sensation evoked by tension on the cell lipid membrane, originating from cell-cell, cell-matrix, or hydrostatic pressure forces, such as laminar flow and shear stress. The application of such forces takes place in normal physiological processes of the cell, but also in the context of different diseases, where microenvironment stiffness or excessive/irregular hydrostatic pressure dysregulates the normal expression and/or activation of Piezo1. Since Piezo1 is expressed in several blood cell lineages and mutations of the channel have been associated with blood cell disorders, studies have focused on its role in the development and function of blood cells. Here, we review the function of Piezo1 in different blood cell lineages and related diseases, with a focus on megakaryocytes and platelets.


Subject(s)
Ion Channels , Signal Transduction , Cell Lineage , Ion Channels/metabolism , Ion Transport , Cell Membrane/metabolism
3.
Am J Hematol ; 99(3): 336-349, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38165047

ABSTRACT

Mechanisms through which mature megakaryocytes (Mks) and their progenitors sense the bone marrow extracellular matrix to promote lineage differentiation in health and disease are still partially understood. We found PIEZO1, a mechanosensitive cation channel, to be expressed in mouse and human Mks. Human mutations in PIEZO1 have been described to be associated with blood cell disorders. Yet, a role for PIEZO1 in megakaryopoiesis and proplatelet formation has never been investigated. Here, we show that activation of PIEZO1 increases the number of immature Mks in mice, while the number of mature Mks and Mk ploidy level are reduced. Piezo1/2 knockout mice show an increase in Mk size and platelet count, both at basal state and upon marrow regeneration. Similarly, in human samples, PIEZO1 is expressed during megakaryopoiesis. Its activation reduces Mk size, ploidy, maturation, and proplatelet extension. Resulting effects of PIEZO1 activation on Mks resemble the profile in Primary Myelofibrosis (PMF). Intriguingly, Mks derived from Jak2V617F PMF mice show significantly elevated PIEZO1 expression, compared to wild-type controls. Accordingly, Mks isolated from bone marrow aspirates of JAK2V617F PMF patients show increased PIEZO1 expression compared to Essential Thrombocythemia. Most importantly, PIEZO1 expression in bone marrow Mks is inversely correlated with patient platelet count. The ploidy, maturation, and proplatelet formation of Mks from JAK2V617F PMF patients are rescued upon PIEZO1 inhibition. Together, our data suggest that PIEZO1 places a brake on Mk maturation and platelet formation in physiology, and its upregulation in PMF Mks might contribute to aggravating some hallmarks of the disease.


Subject(s)
Primary Myelofibrosis , Thrombocythemia, Essential , Humans , Animals , Mice , Megakaryocytes/metabolism , Primary Myelofibrosis/genetics , Bone Marrow , Thrombopoiesis/genetics , Thrombocythemia, Essential/metabolism , Blood Platelets/metabolism , Ion Channels/genetics , Ion Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...