Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 19714, 2024 08 24.
Article in English | MEDLINE | ID: mdl-39181904

ABSTRACT

The synthesis of metal nanoparticles through bio-reduction is environmentally benign and devoid of impurities, which is very important for biological applications. This method aims to improve ZnO nanoparticle's antibacterial and anti-biofilm activity while reducing the amount of hazardous chemicals used in nanoparticle production. The assembly of zinc oxide nanoparticles (ZnO NPs) is presented via bio-reduction of an aqueous zinc nitrate solution using Echinochloacolona (E. colona) plant aqueous leaf extract comprising various phytochemical components such as phenols, flavonoids, proteins, and sugars. The synthesized nano ZnO NPs are characterized by UV-visible spectrophotometer (UV-vis), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (X-RD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and elemental composition by energy-dispersive x-ray spectroscopy (EDX). The formation of biosynthesized ZnO nanoparticles was confirmed by the absorbance at 360-370 nm in the UV-vis spectrum. The average crystal size of the particles was found to be 15.8 nm, as calculated from XRD. SEM and TEM analysis of prepared ZnO NPs confirmed the spherical and hexagonal shaped nanoparticles. ZnO NPs showed antibacterial activity against Escherichia coli and Klebsiella pneumoniae with the largest zone of inhibition (ZOI) of 17 and 18 mm, respectively, from the disc diffusion method. Furthermore, ZnO NPs exhibited significant anti-biofilm activity in a dose-dependent manner against selected bacterial strains, thus suggesting that ZnO NPs can be deployed in the prevention of infectious diseases and also used in food preservation.


Subject(s)
Anti-Bacterial Agents , Biofilms , Escherichia coli , Klebsiella pneumoniae , Metal Nanoparticles , Microbial Sensitivity Tests , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Metal Nanoparticles/chemistry , Escherichia coli/drug effects , Klebsiella pneumoniae/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Phytochemicals/pharmacology , Phytochemicals/chemistry , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared
2.
Sci Rep ; 14(1): 18299, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112730

ABSTRACT

Photocatalysis is essential for wastewater cleanup and clean energy, and in this current study, we have synthesized nanomaterials (iron oxide-based) for photocatalytic pollution degradation and hydrogen production. The performance of aluminium oxide/ferric oxide (Al2O3/Fe2O3), samarium oxide/ferric oxide (Sm2O3/Fe2O3) and yttrium oxide/ferric oxide (Y2O3/Fe2O3) were compared for the production of hydrogen (H2) and degradation of dye under natural sunlight. Various characterisation equipment was used to characterize these photocatalysts' structure, morphology, elemental content, binding energy and band gap. The hydrogen recovery efficiency of iron oxide-based photocatalysts from sulphide-containing wastewater is assessed. Y2O3/Fe2O3 has shown the highest hydrogen production of 340 mL/h. The influence of operating factors such as sulphide ion concentration, catalyst quantity, and photocatalyst photolytic solution volume on hydrogen production is studied. The optimal values were 0.25 M, 0.2 g/L, and 1L, respectively. The developed photocatalyst passed multiple cycles of stability testing. Fe2O3 has shown the highest Rhodamine B (RhB) dye degradation efficiency of 94% under visible light.

3.
Sci Rep ; 14(1): 14730, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926595

ABSTRACT

Ionic liquids (ILs) are highly effective for capturing carbon dioxide (CO2). The prediction of CO2 solubility in ILs is crucial for optimizing CO2 capture processes. This study investigates the use of deep learning models for CO2 solubility prediction in ILs with a comprehensive dataset of 10,116 CO2 solubility data in 164 kinds of ILs under different temperature and pressure conditions. Deep neural network models, including Artificial Neural Network (ANN) and Long Short-Term Memory (LSTM), were developed to predict CO2 solubility in ILs. The ANN and LSTM models demonstrated robust test accuracy in predicting CO2 solubility, with coefficient of determination (R2) values of 0.986 and 0.985, respectively. Both model's computational efficiency and cost were investigated, and the ANN model achieved reliable accuracy with a significantly lower computational time (approximately 30 times faster) than the LSTM model. A global sensitivity analysis (GSA) was performed to assess the influence of process parameters and associated functional groups on CO2 solubility. The sensitivity analysis results provided insights into the relative importance of input attributes on output variables (CO2 solubility) in ILs. The findings highlight the significant potential of deep learning models for streamlining the screening process of ILs for CO2 capture applications.

4.
Environ Res ; 259: 119448, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38942255

ABSTRACT

Dye wastewater consists of high solids concentrations, heavy metals, minor contaminants, dissolved chemical oxygen demand, and microorganisms. Nanoflowers are nanoparticles that resemble flowers when viewed at a microscopic level. Inorganic metal oxide nanoflowers have been discovered to be a potential source for overcoming this situation. Their flower-like features give them a higher surface area to volume ratio and porosity structure, which can absorb a significant amount of dye. The metal oxide nanoflower synthesized from different synthesis methods is used to compare which one is cost-effective and capable of generating a large scale of nanoflower. This review has demonstrated outstanding dye removal efficiency by applying inorganic nanoflowers to dye removal. Since both adsorption and photocatalytic reactions enhance the dye degradation process, complete dye degradation could be achieved. Meanwhile, the inorganic metal oxide nanoflowers' exemplary reusability characteristics with negligible performance drop further prove that this approach is highly sustainable and may help to save costs. This review has proven the momentum of obtaining high dye removal efficiency in wastewater treatment to conclude that the metal oxide nanoflower study is worth researching.


Subject(s)
Coloring Agents , Wastewater , Water Pollutants, Chemical , Coloring Agents/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Wastewater/chemistry , Wastewater/analysis , Waste Disposal, Fluid/methods , Oxides/chemistry , Water Purification/methods , Metal Nanoparticles/chemistry , Nanostructures/chemistry
5.
J Environ Health Sci Eng ; 22(1): 65-74, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887772

ABSTRACT

Wastewater-based epidemiology (WBE) is considered an innovative and promising tool for estimating community exposure to a wide range of chemical and biological compounds by analyzing wastewater. Despite scholars' interest in WBE studies, there are uncertainties and limitations associated with this approach. This current review focuses on the feasibility of the WBE approach in assessing environmental pollutants, including pesticides, heavy metals, phthalates, bisphenols, and personal care products (PCPs). Limitations and challenges of WBE studies are initially discussed, and then future perspectives, gaps, and recommendations are presented in this review. One of the key limitations of this approach is the selection and identification of appropriate biomarkers in studies. Selecting biomarkers considering the basic requirements of a human exposure biomarker is the most important criterion for validating this new approach. Assessing the stability of biomarkers in wastewater is crucial for reliable comparisons of substance consumption in the population. However, directly analyzing wastewater does not provide a clear picture of biomarker stability. This uncertainty affects the reliability of temporal and spatial comparisons. Various uncertainties also arise from different steps involved in WBE. These uncertainties include sewage sampling, exogenous sources, analytical measurements, back-calculation, and estimation of the population under investigation. Further research is necessary to ensure that measured pollutant levels accurately reflect human excretion. Utilizing data from WBE can support healthcare policy in assessing exposure to environmental pollutants in the general population. Moreover, WBE seems to be a valuable tool for biomarkers that indicate healthy conditions, lifestyle, disease identification, and exposure to pollutants. Although this approach has the potential to serve as a biomonitoring tool in large communities, it is necessary to monitor more metabolites from wastewater to enhance future studies.

6.
Sci Rep ; 14(1): 9866, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684797

ABSTRACT

A series of novel chromone derivatives of (N-(4-oxo-2-(trifluoromethyl)-4H-chromen-6-yl) benzamides) were synthesized by treating 7-amino-2-(trifluoromethyl)-4H-chromen-4-one with K2CO3 and/or NaH, suitable alkyl halides and acetonitrile and/or 1,4-dioxane. The obtained products are in high yields (87 to 96%) with various substituents in short reaction times with no more by-products and confirmed by FT-IR, 1H, and 13C-NMR Spectral data. The in vitro cytotoxic activity was examined against two human cancer cell lines, namely the human lung adenocarcinoma (A-549) and the human breast (MCF-7) cancer cell line. Compound 4h showed promising cytotoxicity against both cell lines with IC50 values of 22.09 and 6.40 ± 0.26 µg/mL respectively, compared to that of the standard drug. We also performed the in vitro antioxidant activity by DPPH radical, hydrogen peroxide, NO scavenging, and total antioxidant capacity (TAC) assay methods, and they showed significant activities. The possible binding interactions of all the synthesized chromone derivatives are also investigated against selective pharmacological targets of human beings, such as HERA protein for cytotoxic activity and Peroxiredoxins (3MNG) for antioxidant activity which showed closer binding free energies than the standard drugs and evidencing the above two types of activities.


Subject(s)
Antineoplastic Agents , Antioxidants , Benzamides , Molecular Docking Simulation , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Benzamides/pharmacology , Benzamides/chemistry , Benzamides/chemical synthesis , MCF-7 Cells , A549 Cells , Chromones/chemistry , Chromones/pharmacology , Chromones/chemical synthesis , Cell Line, Tumor , Structure-Activity Relationship
7.
Sci Rep ; 14(1): 4934, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418697

ABSTRACT

Plastic waste is being manufactured for the production of hydrogen. The amount of plastic waste collected annually is 189,953 tonnes from adjacent nations like Indonesia and Malaysia. Polyethylene (PE), Polypropylene (PP), Polyethylene Terephthalate (PET), Polyvinyl chloride (PVC), and Polystyrene (PS) are the five most prevalent forms of plastic found in most waste. Pyrolysis, water gas shift and steam reforming reaction, and pressure swing adsorption are the three main phases utilized and studied. In this research, authors examines the energy consumption on every stage. The plastic waste can be utilized to manufacture many hydrocarbons using the pyrolysis reaction. For this process, fast pyrolysis is being used at a temperature of 500 °C. A neutralization process is also needed due to the presence of Hydrochloric acid from the pyrolysis reaction, with the addition of sodium hydroxide. This is being carried to prevent any damage to the reactor during the process. Secondly, the steam reforming process continues after the water gas shift reaction has produced steam and carbon monoxide, followed by carbon dioxide and hydrogen formation. Lastly, pressure swing adsorption is designed to extract H2S and CO2 from the water gas shift and steam reforming reaction for greater purity of hydrogen. From the simulation study, it is observed that using various types of plastic waste procured (total input of 20,000 kg per hour of plastics) from, Brunei Darussalam, Malaysia and Indonesia, can produce about 340,000 tons of Hydrogen per year. Additionally, the annual profit of the Hydrogen production is estimated to be between $ 271,158,100 and $ 358,480,200. As per the economic analysis, it can be said that its a good to start hydrogen production plant in these regions.

8.
Sci Rep ; 14(1): 4267, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38383598

ABSTRACT

This study synthesized a highly efficient KOH-treated sunflower stem activated carbon (KOH-SSAC) using a two-step pyrolysis process and chemical activation using KOH. The resulting material exhibited exceptional properties, such as a high specific surface area (452 m2/g) and excellent adsorption capacities for phenol (333.03 mg/g) and bisphenol A (BPA) (365.81 mg/g). The adsorption process was spontaneous and exothermic, benefiting from the synergistic effects of hydrogen bonding, electrostatic attraction, and stacking interactions. Comparative analysis also showed that KOH-SSAC performed approximately twice as well as sunflower stem biochar (SSB), indicating its potential for water treatment and pollutant removal applications. The study suggests the exploration of optimization strategies to further enhance the efficiency of KOH-SSAC in large-scale scenarios. These findings contribute to the development of improved materials for efficient water treatment and pollution control.


Subject(s)
Benzhydryl Compounds , Helianthus , Water Pollutants, Chemical , Phenol/analysis , Charcoal/chemistry , Wastewater , Phenols/analysis , Thermodynamics , Adsorption , Kinetics , Water Pollutants, Chemical/analysis
10.
Sci Rep ; 13(1): 22665, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114620

ABSTRACT

Research studies have been carried out to accentuate Fennel Seed Spent, a by-product of the Nutraceutical Industry, as an inexpensive, recyclable and operational biosorbent for bioremediation of Acid Blue 113 (AB113) in simulated water-dye samples and textile industrial effluent (TIE). The physical process of adhesion of AB113 on the surface of the biosorbent depends on various parameters, such as the initial amount of the dye, amount and expanse of the biosorbent particles, pH of the solution and temperature of the medium. The data obtained was analyzed using three two-parameter and five three-parameter adsorption isotherm models to glean the adsorbent affinities and interaction mechanism of the adsorbate molecules and adsorbent surface. The adsorption feature study is conducted employing models of Weber-Morris, pseudo 1st and 2nd order, diffusion film model, Dumwald-Wagner and Avrami model. The study through 2nd order pseudo and Avrami models produced complementary results for the authentication of experimental data. The thermodynamic features, ΔG0, ΔH0, and ΔS0 of the adsorption process are acclaimed to be almost spontaneous, physical in nature and endothermic in their manifestation. Surface characterization was carried out using Scanner Electron Microscopy, and identification and determination of chemical species and molecular structure was performed using Infrared Spectroscopy (IR). Maximum adsorption evaluated using statistical optimization with different combinations of five independent variables to study the individual as well as combined effects by Fractional Factorial Experimental Design (FFED) was 236.18 mg g-1 under optimized conditions; pH of 2, adsorbent dosage of 0.500 g L-1, and an initial dye concentration of 209.47 mg L-1 for an adsorption time of 126.62 min with orbital shaking of 165 rpm at temperature 49.95 °C.

11.
Sci Rep ; 13(1): 13833, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37620506

ABSTRACT

Discharging untreated dye-containing wastewater gives rise to environmental pollution. The present study investigated the removal efficiency and adsorption mechanism of Acid Red 18 (AR18) utilizing hexadecyl-trimethyl ammonium chloride (HDTMA.Cl) modified Nano-pumice (HMNP), which is a novel adsorbent for AR18 removal. The HDTMA.Cl is characterized by XRD, XRF, FESEM, TEM, BET and FTIR analysis. pH, contact time, initial concentration of dye and adsorbent dose were the four different parameters for investigating their effects on the adsorption process. Response surface methodology-central composite design was used to model and improve the study to reduce expenses and the number of experiments. According to the findings, at the ideal conditions (pH = 4.5, sorbent dosage = 2.375 g/l, AR18 concentration = 25 mg/l, and contact time = 70 min), the maximum removal effectiveness was 99%. The Langmuir (R2 = 0.996) and pseudo-second-order (R2 = 0.999) models were obeyed by the adsorption isotherm and kinetic, respectively. The nature of HMNP was discovered to be spontaneous, and thermodynamic investigations revealed that the AR18 adsorption process is endothermic. By tracking the adsorption capacity of the adsorbent for five cycles under ideal conditions, the reusability of HMNP was examined, which showed a reduction in HMNP's adsorption effectiveness from 99 to 85% after five consecutive recycles.

12.
Environ Res ; 234: 116440, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37356527

ABSTRACT

Oxides of vanadium, titanium and graphitic carbon nitride (g-C3N4) are well known for their catalytic activities. In order to achieve synergic catalytic effects, a novel nanocomposite (NC) i.e. V2O5/TiO2/g-C3N4 has been synthesized by a very simple, ecofriendly and nonhazardous hydrothermal method. The fabricated NC was characterized employing UV-Visible, FTIR, SEM, and XRD techniques. UV-Visible and FTIR analysis indicated the formation of the nanocomposite and XRD analysis confirmed the association of V2O5 and TiO2 with g-C3N4 in nanocomposite. SEM study indicated the hetero-structure of NC having size ranging from 50 to 80 nm and it was found having hexagonal crystallite structure. The synthesized nanocomposite exhibited excellent scavenging of free radicals DPPH● (91%) and ABTS●+ (64%) that are responsible for the oxidation of biomolecules. Therefore, NC can be claimed having biomolecule oxidation protective potential. In addition, photocatalytic ability for the degradation of methylene blue (MB) and methyl orange (MO) was also achieved up to 94% and 89% respectively. The synthesized novel nanocomposite exhibited excellent potential to remove free radicals and dyes from aqueous medium which can be further used for the environmental remediation.


Subject(s)
Light , Nanocomposites , Coloring Agents , Nanocomposites/chemistry , Catalysis
13.
Heliyon ; 9(5): e15575, 2023 May.
Article in English | MEDLINE | ID: mdl-37153391

ABSTRACT

The presence of heavy metal, chromium (VI), in water environments leads to various diseases in humans, such as cancer, lung tumors, and allergies. This review comparatively examines the use of several adsorbents, such as biosorbents, activated carbon, nanocomposites, and polyaniline (PANI), in terms of the operational parameters (initial chromium (VI) concentration (Co), temperature (T), pH, contact time (t), and adsorbent dosage) to achieve the Langmuir's maximum adsorption capacity (qm) for chromium (VI) adsorption. The study finds that the use of biosorbents (fruit bio-composite, fungus, leave, and oak bark char), activated carbons (HCl-treated dry fruit waste, polyethyleneimine (PEI) and potassium hydroxide (KOH) PEI-KOH alkali-treated rice waste-derived biochar, and KOH/hydrochloric acid (HCl) acid/base-treated commercial), iron-based nanocomposites, magnetic manganese-multiwalled carbon nanotubes nanocomposites, copper-based nanocomposites, graphene oxide functionalized amino acid, and PANI functionalized transition metal are effective in achieving high Langmuir's maximum adsorption capacity (qm) for chromium (VI) adsorption, and that operational parameters such as initial concentration, temperature, pH, contact time, and adsorbent dosage significantly affect the Langmuir's maximum adsorption capacity (qm). Magnetic graphene oxide functionalized amino acid showed the highest experimental and pseudo-second-order kinetic model equilibrium adsorption capacities. The iron oxide functionalized calcium carbonate (IO@CaCO3) nanocomposites showed the highest heterogeneous adsorption capacity. Additionally, Syzygium cumini bark biosorbent is highly effective in treating tannery industrial wastewater with high levels of chromium (VI).

14.
Sci Rep ; 13(1): 7398, 2023 May 06.
Article in English | MEDLINE | ID: mdl-37149723

ABSTRACT

A limited experimental work was on multi-walled carbon nanotube (MWCNT)-water nanofluid with surfactant in the solar parabolic collector at low volume concentrations. At high-volume concentrated nanofluid, the pressure drop was more due to an increase in the viscosity of the working fluid and an increase in the nanoparticle cost; hence it is not economical. This report attempted to use Sodium Dodecyl Benzene Sulfonate (SDBS) surfactant in the low-volume concentrated MWCNT-water nanofluid to establish effective heat transfer in solar parabolic collector applications. The stable MWCNT-water nanofluid was prepared at 0.0158, 0.0238, and 0.0317 volume concentrations. The experiments were conducted from 10:00 to 16:00 at 6, 6.5 and 7 L/min flow rates concerning ASHRAE Standards. At the 7 L/min flow rate of the working fluid, having a minimum temperature difference between the working fluid and absorber tube leads to better heat transfer. The increased volume concentration of MWCNT in the water enhances the surface area interaction between water and MWCNT nanoparticles. This results in maximum solar parabolic collector efficiency at 0.0317 vol% with a 7 L/min flow rate and 10-11% higher than the distilled water.

15.
Sci Rep ; 13(1): 7831, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37188708

ABSTRACT

4-Chlorophenol pollution is a significant environmental concern. In this study, powdered activated carbon modified with amine groups is synthesized and investigated its efficiency in removing 4-chlorophenols from aqueous environments. Response surface methodology (RSM) and central composite design (CCD) were used to investigate the effect of different parameters, including pH, contact time, adsorbent dosage, and initial 4-chlorophenol concentration, on 4-chlorophenol removal efficiency. The RSM-CCD approach was implemented in R software to design and analyze the experiments. The statistical analysis of variance (ANOVA) was used to describe the roles of effecting parameters on response. Isotherm and kinetic studies were done with three Langmuir, Freundlich, and Temkin isotherm models and four pseudo-first-order, pseudo-second-order, Elovich, and intraparticle kinetic models in both linear and non-linear forms. The synthesized adsorbent was characterized using X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) analyses. The results showed that the synthesized modified activated carbon had a maximum adsorption capacity of 316.1 mg/g and exhibited high efficiency in removing 4-chlorophenols. The optimal conditions for the highest removal efficiency were an adsorbent dosage of 0.55 g/L, contact time of 35 min, initial concentration of 4-chlorophenol of 110 mg/L, and pH of 3. The thermodynamic study indicated that the adsorption process was exothermic and spontaneous. The synthesized adsorbent also showed excellent reusability even after five successive cycles. These findings demonstrate the potential of modified activated carbon as an effective method for removing 4-chlorophenols from aqueous environments and contributing to developing sustainable and efficient water treatment technologies.

16.
Environ Res ; 231(Pt 2): 116147, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37187307

ABSTRACT

Both the environment and human health have suffered as a result of excessive and irrational pesticide use. The human body is vulnerable to a wide range of illnesses brought on by prolonged exposure to or intake of food contaminated with pesticide residues, including immunological and hormonal abnormalities and the development of certain tumors. Sensors based on nanoparticles stand out from more conventional spectrophotometry analytical methods due to their low detection limits, high sensitivity, and ease of use; that is why the demand for simple, fast, and less expensive sensing methods increases daily and presents myriad uses. Such demands are fulfilled by employing paper-based analytical devices having intrinsic properties. The presented work reports an on-site, easy-to-handle, and disposable paper-based sensing device for performing fast screening along with readout from a smartphone. The fabricated device utilizes luminescent silica quantum dots, immobilized into a paper cellulose matrix, and the resonance energy transfer phenomenon is employed. The silica quantum dots probes were fabricated from citric acid and, by undergoing physical adsorption, were confined on the nitrocellulose substrate in small wax-traced spots. The silica quantum dots were excited by smartphone ultraviolet LED, acting as an energy source and for capturing the image. The obtained LOD is 0.054 µM, and the coefficient of variation is less than 6.1%, comparable to the result obtained by UV-Visible and fluorometric analysis under similar experimental conditions. In addition, high reproducibility (≥9.8%) and high recovery ≥90% were obtained in spiked blood samples. The fabricated sensor sensitively detected pesticides giving a LOD of 2.5 ppm along with the development of yellow color within a short period of 5 min. The sensor functions well when sophisticated instrumentation is not accessible. The presented work shows the potential of the paper strip for the on-site detection of pesticides in biological and environmental samples.


Subject(s)
Pesticides , Quantum Dots , Humans , Pesticides/analysis , Quantum Dots/chemistry , Silicon Dioxide/chemistry , Reproducibility of Results , Luminescence
17.
Ultrason Sonochem ; 94: 106302, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36736130

ABSTRACT

Water is one of the major sources that spread human diseases through contamination with bacteria and other pathogenic microorganisms. This review focuses on microbial hazards as they are often present in water and wastewater and cause various human diseases. Among the currently used disinfection methods, sonochemical reactors (SCRs) that produce free radicals combined with advanced oxidation processes (AOPs) have received significant attention from the scientific community. Also, this review discussed various types of cavitation reactors, such as acoustic cavitation reactors (ACRs) utilizing ultrasonic energy (UE), which had been widely employed, involving AOPs for treating contaminated waters. Besides ACRs, hydrodynamic cavitation reactors (HCRs) also effectively destroy and deactivate microorganisms to varying degrees. Cavitation is the fundamental phenomenon responsible for initiating many sonochemical reactions in liquids. Bacterial degradation occurs mainly due to the thinning of microbial membranes, local warming, and the generation of free radicals due to cavitation. Over the years, although extensive investigations have focused on the antimicrobial effects of UE (ultrasonic energy), the primary mechanism underlying the cavitation effects in the disinfection process, inactivation of microbes, and chemical reactions involved are still poorly understood. Therefore, studies under different conditions often lead to inconsistent results. This review investigates and compares other mechanisms and performances from greener and environmentally friendly sonochemical techniques to the remediation of microbial hazards associated with water and wastewater. Finally, the energy aspects, challenges, and recommendations for future perspectives have been provided.


Subject(s)
Water Pollutants, Chemical , Water Purification , Humans , Wastewater , Water Purification/methods , Water , Oxidation-Reduction , Disinfection , Water Pollutants, Chemical/analysis
18.
Environ Res ; 222: 115337, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36682442

ABSTRACT

MXene is a magical class of 2D nanomaterials and emerging in many applications in diverse fields. Due to the multiple advantageous characteristics of its fundamental components, such as structural, physicochemical, optical, and occasionally even biological characteristics. However, it is limited in the biomedical industry due to poor physiological stability, decomposition rate, and lack of controlled and sustained drug release. These limitations can be overcome when MXene forms composites with other 2D materials. The efficiency of pure MXene in biomedicine is inferior to that of MXene-based composites. The availability of functionality on the exterior part of MXene has a key role in the modification of their surface and their characteristics. This review provides an extensive discussion on the synthesizing of MXene and the role of the surface functionalities on the efficiency of MXene. In addition, a detailed discussion of the biomedical applications of MXene, including antibacterial activity, regenerative medicine, CT scan capability, drug delivery, diagnostics, MRI and biosensing capability. Furthermore, an outline of the future problems and challenges of MXene-based materials for biomedical applications was narrated. Thus, these salient features showcase the potential of MXene-based material and will be a breakthrough in biomedical applications in the near future.


Subject(s)
Anti-Bacterial Agents , Nanostructures , Drug Delivery Systems , Industry
19.
Environ Res ; 220: 115169, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36587722

ABSTRACT

To date, the development of renewable fuels has become a normal phenomenon to solve the problem of diesel fuel emissions and the scarcity of fossil fuels. Biodiesel production has some limitations, such as two-step processes requiring high free fatty acids (FFAs), oil feedstocks and gum formation. Hydrotreated vegetable oil (HVO) is a newly developed international renewable diesel that uses renewable feedstocks via the hydrotreatment process. Unlike FAME, FFAs percentage doesn't affect the HVO production and sustains a higher yield. The improved characteristics of HVO, such as a higher cetane value, better cold flow properties, lower emissions and excellent oxidation stability for storage, stand out from FAME biodiesel. Moreover, HVO is a hydrocarbon without oxygen content, but FAME is an ester with 11% oxygen content which makes it differ in oxidation stability. Waste sludge palm oil (SPO), an abundant non-edible industrial waste, was reused and selected as the feedstock for HVO production. Techno-economical and energy analyses were conducted for HVO production using Aspen HYSYS with a plant capacity of 25,000 kg/h. Alternatively, hydrogen has been recycled to reduce the hydrogen feed. With a capital investment of RM 65.86 million and an annual production cost of RM 332.56 million, the base case of the SPO-HVO production process was more desirable after consideration of all economic indicators and HVO purity. The base case of SPO-HVO production could achieve a return on investment (ROI) of 89.03% with a payback period (PBP) of 1.68 years. The SPO-HVO production in this study has observed a reduction in the primary greenhouse gas, carbon dioxide (CO2) emission by up to 90% and the total annual production cost by nearly RM 450 million. Therefore, SPO-HVO production is a potential and alternative process to produce biobased diesel fuels with waste oil.


Subject(s)
Plant Oils , Sewage , Palm Oil , Vehicle Emissions , Biofuels/analysis , Gasoline/analysis , Hydrogen , Oxygen
20.
Environ Res ; 222: 115279, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36706895

ABSTRACT

Over the last few years, electroanalysis has made significant advancements, particularly in developing electrochemical sensors. Electrochemical sensors generally include emerging Photoelectrochemical and Electrochemiluminescence sensors, which combine optical techniques and traditional electrochemical bio/non-biosensors. Numerous EC-detecting methods have also been designed for commercial applications to detect biological and non-biological markers for various diseases. Analytical applications have recently focused significantly on one of the novel nanomaterials, the MXene. This material is being extensively investigated for applications in electrochemical sensors due to its unique mechanical, electronic, optical, active functional groups and thermal characteristics. This study extensively discusses the salient features of MXene-based electrochemical sensors, photoelectrochemical sensors, enzyme-based biosensors, immunosensors, aptasensors, electrochemiluminescence sensors, and electrochemical non-biosensors. In addition, their performance in detecting various substances and contaminants is thoroughly discussed. Furthermore, the challenges and prospects the MXene-based electrochemical sensors are elaborated.


Subject(s)
Biosensing Techniques , Nanostructures , Biosensing Techniques/methods , Electrochemical Techniques/methods , Immunoassay , Nanostructures/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL