Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Total Environ ; 897: 165290, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37406703

ABSTRACT

In the present study, the ability of a coating of zinc oxide (ZnO) powder to improve the fire-safety of wood exposed to radiative heat flux was examined, focusing on the ignition time of the wood. To test ZnO's efficiency on the wood substrate, two different amounts of ZnO (0.5 and 1 g ZnO per dm2) were applied to the wood surface and exposed to radiative heat from a cone calorimeter wherein a pristine piece of wood with no ZnO treatment was taken as control. The experiments were conducted at three different irradiation levels i.e., 20, 35, and 50 kWm-2. The results showed that applying ZnO on the surface of the wood significantly increased the ignition time (TTI). For the three different heat fluxes, using 0.5 g ZnO per dm2 coating on the wood surface increased the TTI by 26-33 %. Furthermore, the application of 1 g of ZnO per dm2 generated a TTI increment of 37-40 %. All three irradiation levels showed similar trends in TTI. The micrographs taken before and after combustion showed no significant disparity in the morphology of ZnO. The agglomerated ZnO particles on the wood surface remained intact after combustion. This study demonstrates a facile method of using ZnO to delay the ignition of wood. This could potentially impart fire-safety to wooden structures/façades in wildland-urban interfaces and elsewhere by reducing flame spread.

2.
Sci Rep ; 12(1): 21888, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36535964

ABSTRACT

Durability and reliability are the key factors that prevent fuel cells from successful implementation in automotive sector. Dynamic load change is a common and frequent condition that the fuel cell has to undergo in automotive applications. Fuel cells are more sensitive to changes in load conditions and degrade based on load variation representing idling, rated power, and high power operating conditions. To examine the influence of dynamic load step on the fuel cell performance, two similar cells of active 25 cm2 was tested under two different load step for the same dynamic load cycle. The main difference in dynamic load cycle 2 was the ramp rate which was fixed as 0.1, 0.3, and 0.25 A/cm2/s for 0.2, 0.6, and 1.0 A/cm2 respectively. To investigate the degradative effects, polarization curves, electrochemical impedance spectroscopy, and field emission scanning electron microscopy were used. The results indicated that the degradation rate increased in both dynamic load cycles but however the impact of load change was comparatively minimal in dynamic load cycle 2. The total degradation in performance was 20.67% and 10.72% in dynamic load cycles 1 and 2 respectively. Fuel cell performance degraded in a manner that was consistent with the electrochemical impedance spectroscopy and cross-sectional analysis of field emission scanning electron microscopy. The results prove that the degradation rate is dependent on the load step and the number of load cycles. Severe catalyst degradation and delamination were observed in fuel cells operated under dynamic load cycle 1.


Subject(s)
Allium , Cross-Sectional Studies , Reproducibility of Results , Electrolytes , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...