Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Genet ; 45(1): 1-14, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17965226

ABSTRACT

Hirschsprung disease (HSCR, aganglionic megacolon) represents the main genetic cause of functional intestinal obstruction with an incidence of 1/5000 live births. This developmental disorder is a neurocristopathy and is characterised by the absence of the enteric ganglia along a variable length of the intestine. In the last decades, the development of surgical approaches has importantly decreased mortality and morbidity which allowed the emergence of familial cases. Isolated HSCR appears to be a non-Mendelian malformation with low, sex-dependent penetrance, and variable expression according to the length of the aganglionic segment. While all Mendelian modes of inheritance have been described in syndromic HSCR, isolated HSCR stands as a model for genetic disorders with complex patterns of inheritance. The tyrosine kinase receptor RET is the major gene with both rare coding sequence mutations and/or a frequent variant located in an enhancer element predisposing to the disease. Hitherto, 10 genes and five loci have been found to be involved in HSCR development.


Subject(s)
Hirschsprung Disease/genetics , Hirschsprung Disease/pathology , Chromosome Aberrations , Female , Hirschsprung Disease/epidemiology , Humans , Intestinal Obstruction/genetics , Male , Molecular Biology , Mutation , Receptor Protein-Tyrosine Kinases/genetics , Syndrome
3.
Genome Res ; 11(11): 1913-25, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11691856

ABSTRACT

The genetic dissection of complex traits may ultimately require a large number of SNPs to be genotyped in multiple individuals who exhibit phenotypic variation in a trait of interest. Microarray technology can enable rapid genotyping of variation specific to study samples. To facilitate their use, we have developed an automated statistical method (ABACUS) to analyze microarray hybridization data and applied this method to Affymetrix Variation Detection Arrays (VDAs). ABACUS provides a quality score to individual genotypes, allowing investigators to focus their attention on sites that give accurate information. We have applied ABACUS to an experiment encompassing 32 autosomal and eight X-linked genomic regions, each consisting of approximately 50 kb of unique sequence spanning a 100-kb region, in 40 humans. At sufficiently high-quality scores, we are able to read approximately 80% of all sites. To assess the accuracy of SNP detection, 108 of 108 SNPs have been experimentally confirmed; an additional 371 SNPs have been confirmed electronically. To access the accuracy of diploid genotypes at segregating autosomal sites, we confirmed 1515 of 1515 homozygous calls, and 420 of 423 (99.29%) heterozygotes. In replicate experiments, consisting of independent amplification of identical samples followed by hybridization to distinct microarrays of the same design, genotyping is highly repeatable. In an autosomal replicate experiment, 813,295 of 813,295 genotypes are called identically (including 351 heterozygotes); at an X-linked locus in males (haploid), 841,236 of 841,236 sites are called identically.


Subject(s)
Genetic Variation/genetics , Oligonucleotide Array Sequence Analysis/methods , Algorithms , GC Rich Sequence/genetics , Genotype , Humans , Models, Genetic , Oligonucleotide Array Sequence Analysis/statistics & numerical data , Oligonucleotide Probes/genetics , Polymorphism, Single Nucleotide/genetics , Reproducibility of Results
4.
Genome Res ; 11(8): 1382-91, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11483579

ABSTRACT

The human genome provides a reference sequence, which is a template for resequencing studies that aim to discover and interpret the record of common ancestry that exists in extant genomes. To understand the nature and pattern of variation and linkage disequilibrium comprising this history, we present a study of approximately 31 kb spanning an approximately 70 kb region of FMR1, sequenced in a sample of 20 humans (worldwide sample) and four great apes (chimp, bonobo, and gorilla). Twenty-five polymorphic sites and two insertion/deletions, distributed in 11 unique haplotypes, were identified among humans. Africans are the only geographic group that do not share any haplotypes with other groups. Parsimony analysis reveals two main clades and suggests that the four major human geographic groups are distributed throughout the phylogenetic tree and within each major clade. An African sample appears to be most closely related to the common ancestor shared with the three other geographic groups. Nucleotide diversity, pi, for this sample is 2.63 +/- 6.28 x 10(-4). The mutation rate, mu is 6.48 x 10(-10) per base pair per year, giving an ancestral population size of approximately 6200 and a time to the most recent common ancestor of approximately 320,000 +/- 72,000 per base pair per year. Linkage disequilibrium (LD) at the FMR1 locus, evaluated by conventional LD analysis and by the length of segment shared between any two chromosomes, is extensive across the region.


Subject(s)
Genetic Variation/genetics , Nerve Tissue Proteins/genetics , Animals , Fragile X Mental Retardation Protein , Fragile X Syndrome/genetics , Genetic Markers/genetics , Gorilla gorilla , Humans , Linkage Disequilibrium/genetics , Male , Microsatellite Repeats/genetics , Pan paniscus , Pan troglodytes , Phylogeny , Polymorphism, Genetic/genetics , RNA-Binding Proteins/genetics , Recombination, Genetic/genetics
5.
Genome Res ; 10(9): 1319-32, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10984450

ABSTRACT

In this study we quantify the features of meiotic recombination on the long arm of human chromosome 21. We constructed a 67. 3-centimorgan (cM) high-resolution, comprehensive, and accurate genetic linkage map of chromosome 21q using 187 highly polymorphic markers covering almost the entire long arm; 46 loci, consisting of mutually recombining marker sets, were ordered with greater than 1000:1 odds and with average interlocus distance of 1.46 cM. These markers were used to accurately identify all exchanges in 186 female and 160 male meioses and to show (1) significant excess of recombination in female versus male meioses, (2) an overall decline in female:male recombination between the centromere and the telomere, (3) greater positive chiasma interference in male than in female meioses, and (4) lack of correlation between exchange frequency and parental age. By comparing the genetic map with the 21q sequence map, we show a general trend of increasing male, but near-constant female, recombination versus physical distance across 21q, explaining the gender-specific recombination effect. The recombination rate varies considerably between genders across 21q but is the greatest (eightfold) in the pericentromeric region, with a rate of approximately 250 kb/cM in females and approximately 2125 kb/cM in males. We used information on the locations of all exchanges to construct an empirical map function that confirms the statistical findings of positive interference. These analyses reveal that occurrence of recombination on 21q is not only gender-specific but also region-specific and that recombination suppression at the centromere is not universal. We also find evidence that male exchange location is highly correlated with gene density.


Subject(s)
Chromosomes, Human, Pair 21/genetics , Meiosis/genetics , Recombination, Genetic/genetics , Adolescent , Adult , Age Factors , Aged , Crossing Over, Genetic/genetics , Female , Genetic Linkage , Humans , Male , Middle Aged , Parents , Physical Chromosome Mapping/statistics & numerical data , Sex Factors
6.
Genome Res ; 8(2): 111-23, 1998 Feb.
Article in English | MEDLINE | ID: mdl-9477339

ABSTRACT

Genetic studies of complex hereditary disorders require for their mapping the determination of genotypes at several hundred polymorphic loci in several hundred families. Because only a minority of markers are expected to show linkage and association in family data, a simple screen of genetic markers to identify those showing linkage in pooled DNA samples can greatly facilitate gene identification. All studies involving pooled DNA samples require the comparison of allele frequencies in appropriate family samples and subsamples. We have tested the accuracy of allele frequency estimates, in various DNA samples, by pooling DNA from multiple individuals prior to PCR amplification. We have used the ABI 377 automated DNA sequencer and GENESCAN software for quantifying total amplification using a 5' fluorescently labeled forward PCR primer and relative peak heights to estimate allele frequencies in pooled DNA samples. In these studies, we have genotyped 11 microsatellite markers in two separate DNA pools, and an additional four markers in a third DNA pool, and compared the estimated allele frequencies with those determined by direct genotyping. In addition, we have evaluated whether pooled DNA samples can be used to accurately assess allele frequencies on transmitted and untransmitted chromosomes, in a collection of families for fine-structure gene mapping using allelic association. Our studies show that accurate, quantitative data on allele frequencies, suitable for identifying markers for complex disorders, can be identified from pooled DNA samples. This approach, being independent of the number of samples comprising a pool, promises to drastically reduce the labor and cost of genotyping in the initial identification of disease loci. Additional applications of DNA pooling are discussed. These developments suggest that new statistical methods for analyzing pooled DNA data are required.


Subject(s)
Alleles , Chromosome Mapping/methods , Gene Frequency , Genetic Diseases, Inborn/genetics , DNA Primers , Fluorescent Dyes , Genetic Testing/methods , Genotype , Humans , Linkage Disequilibrium , Microsatellite Repeats , Polymerase Chain Reaction , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL