Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38592777

ABSTRACT

The integration of semi-transparent photovoltaics into the roof of greenhouses is an emerging technique used in recent years, due to the simultaneous energy and food production from the same piece of land. Although shading in many cases is a solution to maintain the desired microclimate, in the case of photovoltaic installations, the permanent shading of the crop is a challenge, due to the importance of light to the growth, morphogenesis, and other critical physiological processes. In this study, the effect of shade from semi-transparent photovoltaics on a strawberry crop (Fragaria x ananassa Duch.) was examined, in terms of growth and quality (phenolic and flavonoid concentration of fruits). According to the results, in non-shaded plants, there was a trend of larger plants, but without a significant change in leaf number, while the total number of flowers was slightly higher at the end of the cultivation period. Moreover, it was found that the percentage change between the number of ripe fruits was smaller than that of the corresponding change in fruit weight, implying the increased size of the fruits in non-shaded plants. Finally, regarding the antioxidant capacity, it was clearly demonstrated that shading increased the total phenolic content, as well as the free-radical-scavenging activity of the harvested fruits. Although the shading from the semi-transparent photovoltaics did not assist the production of large fruits, it did not affect their number and increased some of their quality characteristics. In addition, the advantageous impact of the semi-transparent photovoltaics in the energy part must not be neglected.

2.
Foods ; 8(12)2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31810218

ABSTRACT

The implementation of Infrared (IR) radiation in heated greenhouses possesses the advantage of high directional control and focused compensation of energy losses, appropriate for creating local microclimate conditions in highly energy-consuming systems, such as greenhouses. Moreover, it can efficiently maintain favorable environmental conditions at the plant canopy. The present study studies the application of Infrared (IR) heating in an experimental greenhouse with eggplant (Solanum melongena L.) cultivation. The experimental results are presented from a full cultivation period inside two identical, small scale experimental greenhouses, with IR and forced air heating system, respectively. The effects of IR heating over plant growth parameters, including the yield of the fruits as well as the total phenolic content and the antioxidant profile of eggplants fruits' extracts are measured and discussed. The results indicate a greater uniformity production in the IR heating greenhouse in terms of antioxidant and radical scavenging activities, as well as the total phenolic content. Moreover, the phenolic profile of eggplant fruits from both greenhouses revealed the existence of numerous bioactive compounds, some of which were only characteristic of the eggplant fruits from IR heated greenhouses.

3.
J Sci Food Agric ; 99(2): 781-789, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-29998566

ABSTRACT

BACKGROUND: Photovoltaics (PV) provide an alternative solution to cover energy demands in greenhouses. This study evaluates the effect of PV panels installed on the roofs of greenhouses, and the partial shading that they cause, on the growth parameters and growth indicators of the experimental cultivation of peppers (Capsicum annuum cv. California Wonder). The growth of the plants, the antioxidant profile, radical scavenging activity, total phenolic content, and the phenolic and metabolic profiles (using LC-MS spectrometry and NMR spectroscopy) are evaluated. RESULTS: Data are presented from a full cultivation period. Results indicated that indoor temperatures were similar for both glass and glass-PV (glass with PV panels installed) greenhouses during the day and the night. The production yield was higher for the glass-PV greenhouses. The pepper fruits' weight, dimensions, and thickness were similar in both cases. Comparison of the pepper fruit extracts in terms of total phenolic content, antioxidant, and antiradical activities indicated differences that were not statistically significant. Photometric and spectroscopic studies both showed a smaller distribution of values in the case of the glass-PV greenhouse, probably indicating a more consistent phytochemical profile. CONCLUSION: Covering only a small proportion (ca. 20%) of the greenhouse roof with photovoltaic panels contributes considerably to its energy demands without affecting plant growth and quality. © 2018 Society of Chemical Industry.


Subject(s)
Capsicum/growth & development , Crop Production/methods , Antioxidants/analysis , Capsicum/chemistry , Capsicum/radiation effects , Crop Production/instrumentation , Fruit/chemistry , Fruit/growth & development , Fruit/radiation effects , Light , Phenols/analysis , Vegetables/chemistry , Vegetables/growth & development , Vegetables/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL