Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
Sci Rep ; 13(1): 15080, 2023 09 12.
Article En | MEDLINE | ID: mdl-37699938

Klotho is an antiaging protein, and its levels decline with age and chronic stress. The exogenous administration of Klotho can enhance cognitive performance in mice and negatively modulate the Insulin/IGF1/PI3K/AKT pathway in terms of metabolism. In humans, insulin sensitivity is a hallmark of healthy longevity. Therefore, this study aimed to determine if exogenous Klotho, when added to neuronal and astrocytic cell cultures, could reduce the phosphorylation levels of certain insulin signaling effectors and enhance antioxidant strategies in these cells. Primary cell cultures of cortical astrocytes and neurons from mice were exposed to 1 nM Klotho for 24 h, with or without glucose. Klotho decreased pAKT and mTOR levels. However, in astrocytes, Klotho increased FOXO-3a activity and catalase levels, shielding them from intermediate oxidative stress. In neurons, Klotho did not alter FOXO-3 phosphorylation levels but increased proteasome activity, maintaining lower levels of PFKFB3. This study offers new insights into the roles of Klotho in regulating energy metabolism and the redox state in the brain.


Antioxidants , Proteasome Endopeptidase Complex , Animals , Humans , Mice , Astrocytes , Insulin , Neurons , Phosphatidylinositol 3-Kinases , Ubiquitin
2.
Biomedicines ; 11(4)2023 Apr 14.
Article En | MEDLINE | ID: mdl-37189795

Ouabain (OUA) is a cardiotonic steroid that modulates Na+, K+ -ATPase activity. OUA has been identified as an endogenous substance that is present in human plasma, and it has been shown to be associated with the response to acute stress in both animals and humans. Chronic stress is a major aggravating factor in psychiatric disorders, including depression and anxiety. The present work investigates the effects of the intermittent administration of OUA (1.8 µg/kg) during the chronic unpredictable stress (CUS) protocol in a rat's central nervous system (CNS). The results suggest that the intermittent OUA treatment reversed CUS-induced HPA axis hyperactivity through a reduction in (i) glucocorticoids levels, (ii) CRH-CRHR1 expression, and by decreasing neuroinflammation with a reduction in iNOS activity, without interfering with the expression of antioxidant enzymes. These changes in both the hypothalamus and hippocampus may reflect in the rapid extinction of aversive memory. The present data demonstrate the ability of OUA to modulate the HPA axis, as well as to revert CUS-induced long-term spatial memory deficits.

3.
Sci Rep ; 12(1): 18884, 2022 11 07.
Article En | MEDLINE | ID: mdl-36344527

The α-Klotho is an anti-aging protein that, when overexpressed, extends the life span in humans and mice. It has an anti-inflammatory and protective action on renal cells by inhibiting NF-κB activation and production of inflammatory cytokines in response to TNF-α. Furthermore, studies have shown the neuroprotective effect of α-Klotho against neuroinflammation on different conditions, such as aging, animal models of neurodegenerative diseases, and ischemic brain injury. This work aimed to evaluate the effects of α-Klotho protein on primary glial cell culture against the proinflammatory challenge with LPS and how this could interfere with neuronal health. Cortical mixed glial cells and purified astrocytes were pretreated with α- α-Klotho and stimulated with LPS followed by TNFα, IL-1ß, IL-6, IFN-γ levels, and NF-κB activity analysis. Conditioned medium from cortical mixed glia culture treated with LPS (glia conditioned medium (GCM) was used to induce neuronal death of primary cortical neuronal culture and evaluate if GCM-KL (medium from glia culture pretreated α-Klotho followed by LPS stimulation) or GCM + LPS in the presence of KL can reverse the effect. LPS treatment in glial cells induced an increase in proinflammatory mediators such as TNF-α, IL-1ß, IL-6, and IFN-γ, and activation of astrocyte NF-κB. GCM treated-cortical neuronal culture induced a concentration-dependent neuronal death. Pretreatment with α-Klotho decreased TNF-α and IL-6 production, reverted NF-κB activation, and decreased neuronal death induced by GCM. In addition, KL incubation together with GCM + LPS completely reverts the neuronal toxicity induced by low concentration of GCM-LPS. These data suggest an anti-inflammatory and neuroprotective effect of α-Klotho protein in the CNS. This work demonstrated the therapeutic potential of α-Klotho in pathological processes which involves a neuroinflammatory component.


NF-kappa B , Neuroprotective Agents , Humans , Animals , Mice , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Tumor Necrosis Factor-alpha/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , Interleukin-6/metabolism , Klotho Proteins , Neuroglia/metabolism , Neurons/metabolism , Anti-Inflammatory Agents/pharmacology , Inflammation/metabolism
4.
Biomedicines ; 10(11)2022 Nov 15.
Article En | MEDLINE | ID: mdl-36428505

Ouabain is a cardiac glycoside that has a protective effect against neuroinflammation at low doses through Na+/K+-ATPase signaling and that can activate tumor necrosis factor (TNF) in the brain. TNF plays an essential role in neuroinflammation and regulates glutamate receptors by acting on two different receptors (tumor necrosis factor receptor 1 [TNFR1] and TNFR2) that have distinct functions and expression. The activation of constitutively and ubiquitously expressed TNFR1 leads to the expression of pro-inflammatory cytokines. Thus, this study aimed to elucidate the effects of ouabain in a TNFR1 knockout (KO) mouse model. Interestingly, the hippocampus of TNFR1 KO mice showed a basal increase in both TNFR2 membrane expression and brain-derived neurotrophic factor (BDNF) release, suggesting a compensatory mechanism. Moreover, ouabain activated TNF-α-converting enzyme/a disintegrin and metalloprotease 17 (TACE/ADAM17), decreased N-methyl-D-aspartate (NMDA) receptor subunit 2A (NR2A) expression, and induced anxiety-like behavior in both genotype animals, independent of the presence of TNFR1. However, ouabain induced an increase in interleukin (IL)-1ß in the hippocampus, a decrease in IL-6 in serum, and an increase in NMDA receptor subunit 1 (NR1) only in wild-type (WT) mice, indicating that TNFR1 or TNFR2 expression may be important for some effects of ouabain. Collectively, our results indicate a connection between ouabain signaling and TNFR1, with the effect of ouabain partially dependent on TNFR1.

5.
Front Pharmacol ; 13: 916312, 2022.
Article En | MEDLINE | ID: mdl-36105192

The Na+/K+-ATPase is an integral membrane ion pump, essential to maintaining osmotic balance in cells in the presence of cardiotonic steroids; more specifically, ouabain can be an endogenous modulator of the Na+/K+-ATPase. Here, we conducted a systematic review of the in vitro effects of cardiotonic steroids on Ca2+ in the brain of rats and mice. Methods: The review was carried out using the PubMed, Virtual Health Library, and EMBASE databases (between 12 June 2020 and 30 June 2020) and followed the guidelines described in the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). Results: in total, 829 references were identified in the electronic databases; however, only 20 articles were considered, on the basis of the inclusion criteria. The studies demonstrated the effects of ouabain on Ca2+ signaling in synaptosomes, brain slices, and cultures of rat and mouse cells. In addition to the well-known cytotoxic effects of high doses of ouabain, resulting from indirect stimulation of the reverse mode of the Na+/Ca2+ exchanger and increased intracellular Ca2+, other effects have been reported. Ouabain-mediated Ca2+ signaling was able to act increasing cholinergic, noradrenergic and glutamatergic neurotransmission. Furthermore, ouabain significantly increased intracellular signaling molecules such as InsPs, IP3 and cAMP. Moreover treatment with low doses of ouabain stimulated myelin basic protein synthesis. Ouabain-induced intracellular Ca2+ increase may promote the activation of important cell signaling pathways involved in cellular homeostasis and function. Thus, the study of the application of ouabain in low doses being promising for application in neurological diseases. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020204498, identifier CRD42020204498.

6.
Br J Pharmacol ; 179(8): 1512-1524, 2022 04.
Article En | MEDLINE | ID: mdl-33644859

Na+ /K+ -ATPase, a transmembrane protein essential for maintaining the electrochemical gradient across the plasma membrane, acts as a receptor for cardiotonic steroids such as ouabain. Cardiotonic steroids binding to Na+ /K+ -ATPase triggers signalling pathways or inhibits Na+ /K+ -ATPas activity in a concentration-dependent manner, resulting in a modulation of Ca2+ levels, which are essential for homeostasis in neurons. However, most of the pharmacological strategies for avoiding neuronal death do not target Na+ /K+ -ATPase activity due to its complexity and the poor understanding of the mechanisms involved in Na+ /K+ -ATPase modulation. The present review aims to discuss two points regarding the interplay between Na+ /K+ -ATPase and Ca2+ signalling in the brain. One, Na+ /K+ -ATPase impairment causing illness and neuronal death due to Ca2+ signalling and two, benefits to the brain by modulating Na+ /K+ -ATPase activity. These interactions play an essential role in neuronal cell fate determination and are relevant to find new targets for the treatment of neurodegenerative diseases. LINKED ARTICLES: This article is part of a themed issue on Building Bridges in Neuropharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.8/issuetoc.


Cardiac Glycosides , Ouabain , Calcium/metabolism , Calcium Signaling , Cardiac Glycosides/metabolism , Cardiac Glycosides/pharmacology , Ions/metabolism , Neurons/metabolism , Ouabain/metabolism , Ouabain/pharmacology , Sodium/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
7.
Neurosci Lett ; 759: 136015, 2021 08 10.
Article En | MEDLINE | ID: mdl-34111509

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) regulates several cellular processes including survival, proliferation, and metabolism. In the brain, PTEN is a key modulator of synaptic function, and is involved in regulating synaptogenesis, connectivity, and synaptic plasticity. Herein we discuss how alterations in PTEN can disturb these mechanisms, thus compromising normal synaptic function and consequently contributing to behavioral and cognitive phenotypes observed in autism spectrum disorder (ASD). As the role of PTEN in synaptic function is linked to ASD, a deeper understanding of this interaction will shed light on the pathological mechanisms involved in ASD, contributing to the development of new therapies.


Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/physiopathology , Neuronal Plasticity/physiology , PTEN Phosphohydrolase/metabolism , Female , Humans , Male , Signal Transduction/physiology
8.
Sci Rep ; 10(1): 20189, 2020 11 19.
Article En | MEDLINE | ID: mdl-33214645

Sex differences are considered predictive factors in the development of several neurological diseases, which are also known to coincide with impaired phosphoinositide 3-kinase (PI3K)-AKT pathway activity, an essential signaling cascade involved in the control of several cellular functions such as autophagy and apoptosis. Here, under physiological conditions, we show important sex differences in the underlying balancing mechanisms that lead to similar AKT activity levels and autophagy and apoptosis processes in the two sexes. We demonstrate inverse sex-based expression of PTEN and Klotho, two important proteins that are known to negatively regulate the AKT pathway, and inverse sex-dependent levels of mTOR and FoxO3a activity. Taken together, our findings indicate that inverse sex-based regulation may be one of the underlying balancing mechanisms that differ between the sexes and a possible cause of sex-based autophagic and apoptotic responses to triggering situations that can lead to a sex-based predisposition to some neurological diseases.


Autophagy/physiology , Glucuronidase/metabolism , PTEN Phosphohydrolase/metabolism , Signal Transduction/physiology , Animals , Apoptosis/physiology , Cell Proliferation/physiology , Female , Glucuronidase/genetics , Klotho Proteins , Male , Mice , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Sex Factors
9.
Front Nutr ; 7: 94, 2020.
Article En | MEDLINE | ID: mdl-32850930

The aging process is characterized by a series of molecular and cellular changes over the years that could culminate in the deterioration of physiological parameters important to keeping an organism alive and healthy. Physical exercise, defined as planned, structured and repetitive physical activity, has been an important force to alter physiology and brain development during the process of human beings' evolution. Among several aspects of aging, the aim of this review is to discuss the balance between two vital cellular processes such as autophagy and apoptosis, based on the fact that physical exercise as a non-pharmacological strategy seems to rescue the imbalance between autophagy and apoptosis during aging. Therefore, the effects of different types or modalities of physical exercise in humans and animals, and the benefits of each of them on aging, will be discussed as a possible preventive strategy against neuronal death.

10.
Front Neurosci ; 13: 491, 2019.
Article En | MEDLINE | ID: mdl-31231176

Crosstalk in the pathophysiological processes underpinning metabolic diseases and neurodegenerative disorders have been the subject of extensive investigation, in which insulin signaling and autophagy impairment demonstrate to be a common factor in both conditions. Although it is still somewhat conflicting, pharmacological and genetic strategies that regulate these pathways may be a promising approach for aggregate protein clearancing and consequently the delaying of onset or progression of the disease. However, as the response due to this modulation seems to be time-dependent, finding the right regulation of autophagy may be a potential target for drug development for neurodegenerative diseases. In this way, this review focuses on the role of insulin signaling/resistance and autophagy in some neurodegenerative diseases, discussing pharmacological and non-pharmacological interventions in these diseases.

11.
Neuropharmacology ; 140: 260-274, 2018 09 15.
Article En | MEDLINE | ID: mdl-30099050

Previous research shows Ouabain (OUA) to bind Na, K-ATPase, thereby triggering a number of signaling pathways, including the transcription factors NFᴋB and CREB. These transcription factors play a key role in the regulation of BDNF and WNT-ß-catenin signaling cascades, which are involved in neuroprotection and memory regulation. This study investigated the effects of OUA (10 nM) in the modulation of the principal signaling pathways involved in morphological plasticity and memory formation in the hippocampus of adult rats. The results show intrahippocampal injection of OUA 10 nM to activate the Wnt/ß-Catenin signaling pathway and to increase CREB/BDNF and NFᴋB levels. These effects contribute to important changes in the cellular microenvironment, resulting in enhanced levels of dendritic branching in hippocampal neurons, in association with an improvement in spatial reference memory and the inhibition of long-term memory extinction.


Hippocampus/cytology , Hippocampus/drug effects , Ouabain/pharmacology , Spatial Memory/drug effects , Animals , Axin Protein/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Hippocampus/physiology , Male , Maze Learning , Microinjections , NF-kappa B/metabolism , Neoplasm Proteins/metabolism , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Nucleocytoplasmic Transport Proteins/metabolism , Rats , Spatial Memory/physiology , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/physiology , beta Catenin/metabolism
12.
Ageing Res Rev ; 36: 137-148, 2017 Jul.
Article En | MEDLINE | ID: mdl-28323064

α-Klotho is well described as an anti-aging protein, with critical roles in kidney function as a transmembrane co-receptor for FGF23, and as a soluble factor in serum. α-Klotho is also expressed in the choroid plexus, where it is released into the cerebrospinal fluid. Nonetheless, α-Klotho is also expressed in the brain parenchyma. Accumulating evidence indicates that this pool of α-Klotho, which we define as brain α-Klotho, may play important roles as a neuroprotective factor and in promoting myelination, thereby supporting healthy brain aging. Here we summarize what is known about brain α-Klotho before focusing on the outstanding scientific questions related to its function. We believe there is a need for in vitro studies designed to distinguish between brain α-Klotho and other pools of α-Klotho, and for a greater understanding of the basic function of soluble α-Klotho. The mechanism by which the human KL-VS variant affects cognition also requires further elucidation. To help address these questions we suggest some experimental approaches that other laboratories might consider. In short, we hope to stimulate fresh ideas and encourage new research approaches that will allow the importance of α-Klotho for the aging brain to become clear.


Aging/metabolism , Brain/metabolism , Glucuronidase/biosynthesis , Aging/pathology , Animals , Brain/pathology , Central Nervous System/metabolism , Central Nervous System/pathology , Cognition/physiology , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/biosynthesis , Humans , Klotho Proteins
13.
Article En | MEDLINE | ID: mdl-26909067

Cardiotonic steroids (CTS) are a class of specific ligands of the Na(+), K(+)- ATPase (NKA). NKA is a P-type ATPase that is ubiquitously expressed and although well known to be responsible for the maintenance of the cell electrochemical gradient through active transport, NKA can also act as a signal transducer in the presence of CTS. Inflammation, in addition to importantly driving organism defense and survival mechanisms, can also modulate NKA activity and memory formation, as well as being relevant to many chronic illnesses, neurodegenerative diseases, and mood disorders. The aim of the current review is to highlight the recent advances as to the role of CTS and NKA in inflammatory process, with a particular focus in the central nervous system.

14.
Article En | MEDLINE | ID: mdl-26869995

Steroid hormones, such as sex hormones and glucocorticoids, have been demonstrated to play a role in different cellular processes in the central nervous system, ranging from neurodevelopment to neurodegeneration. Environmental factors, such as calorie intake or fasting frequency, may also impact on such processes, indicating the importance of external factors in the development and preservation of a healthy brain. The hypothalamic-pituitary-adrenal axis and glucocorticoid activity play a role in neurodegenerative processes, including in disorders such as in Alzheimer's and Parkinson's diseases. Sex hormones have also been shown to modulate cognitive functioning. Inflammation is a common feature in neurodegenerative disorders, and sex hormones/glucocorticoids can act to regulate inflammatory processes. Intermittent fasting can protect the brain against cognitive decline that is induced by an inflammatory stimulus. On the other hand, obesity increases susceptibility to inflammation, while metabolic syndromes, such as diabetes, are associated with neurodegeneration. Consequently, given that gonadal and/or adrenal steroids may significantly impact the pathophysiology of neurodegeneration, via their effect on inflammatory processes, this review focuses on how environmental factors, such as calorie intake and intermittent fasting, acting through their modulation of steroid hormones, impact on inflammation that contributes to cognitive and neurodegenerative processes.

15.
Aging (Albany NY) ; 7(12): 1094-111, 2015 Dec.
Article En | MEDLINE | ID: mdl-26647069

Aging is a multifactorial process associated with an increased susceptibility to neurodegenerative disorders which can be related to chronic inflammation. Chronic inflammation, however, can be characterized by the persistent elevated glucocorticoid (GCs) levels, activation of the proinflammatory transcription factor NF-кB, as well as an increase in cytokines. Interestingly, both NF-кB and cytokines can be even modulated by Glycogen Synthase Kinase 3 beta (GSK-3ß) activity, which is a key protein that can intermediate inflammation and metabolism, once it has a critical role in AKT signaling pathway, and can also intermediate WNT/ß-CATENIN signaling pathway. The aim of this study was to verify age-related changes in inflammatory status, as well as in the AKT and WNT signaling pathways. Results showed an age-related increase in neuroinflammation as indicated by NF-кB activation, TNF-α and GCs increased levels, a decrease in AKT activation and an increase in GSK-3ß activity in both 12- and 24- month old animals. Aging also seems to induce a progressive decrease in canonical WNT/ß-CATENIN signaling pathway once there is a decrease in DVL-2 levels and in the transcription of Axin2 gene. Little is known about the DVL-2 regulation as well as its roles in WNT signaling pathway, but for the first time it was suggested that DVL-2 expression can be changed along aging.


Aging/metabolism , Glycogen Synthase Kinase 3/metabolism , Inflammation/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Gene Expression Regulation, Developmental , Glucocorticoids , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3 beta , Hippocampus/physiology , NF-kappa B/genetics , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/genetics , Rats , Signal Transduction/physiology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Wnt Proteins/genetics
16.
Curr Top Med Chem ; 15(21): 2116-38, 2015.
Article En | MEDLINE | ID: mdl-26059361

Recent data from epidemiologic studies have shown that the majority of the public health costs are related to age-related disorders, and most of these diseases can lead to neuronal death. The specific signaling mechanisms underpinning neurodegeneration and aging are incompletely understood. Much work has been directed to the search for the etiology of neurodegeneration and aging and to new therapeutic strategies, including not only drugs but also non-pharmacological approaches, such as physical exercise and low-calorie dietary intake. The most important processes in aging-associated conditions, including neurodegeneration, include the mammalian (or mechanistic target of rapamycin (mTOR, sirtuin (SIRT and insulin/insulin growth factor 1 signaling (IIS pathways. These longevity pathways are involved in an array of different processes, including metabolism, cognition, stress response and brain plasticity. In this review we focus on the current advances involving the mTOR, SIRT and IIS longevity pathways during the course of healthy aging processes and neurodegenerative diseases, bringing new insights in the form of a better understanding of the signaling mechanisms underpinning neurodegeneration and how these differ from physiological normal aging processes. This also provides new targets for the therapeutic management and/or prevention of these devastating age-related disorders.


Insulin-Like Growth Factor I/metabolism , Insulin/metabolism , Longevity/physiology , Molecular Targeted Therapy/methods , Neurodegenerative Diseases/metabolism , TOR Serine-Threonine Kinases/metabolism , Aging/metabolism , Animals , Brain/metabolism , Humans , Neurodegenerative Diseases/drug therapy , Signal Transduction , Sirtuin 1/genetics , Sirtuin 1/metabolism
17.
PLoS One ; 10(5): e0125271, 2015.
Article En | MEDLINE | ID: mdl-25961830

Renal insufficiency can have a negative impact on cognitive function. Neuroinflammation and changes in klotho levels associate with chronic kidney disease (CKD) and may play a role in the development of cognitive impairment (CI). The present study evaluates the correlation of cognitive deficits with neuroinflammation and soluble KLOTHO in the cerebral spinal fluid (CSF) and brain tissue of nephrectomized rats (Nx), with 5/6 renal mass ablation. Nx and sham Munich Wistar rats were tested over 4 months for locomotor activity, as well as inhibitory avoidance or novel object recognition, which started 30 days after the surgery. EMSA for Nuclear factor-κB and MILLIPLEXMAP or ELISA kit were used to evaluate cytokines, glucocorticoid and KLOTHO levels. Nx animals that showed a loss in aversive-related memory and attention were included in the CI group (Nx-CI) (n=14) and compared to animals with intact learning (Nx-M n=12 and Sham n=20 groups). CSF and tissue samples were collected 24 hours after the last behavioral test. The results show that the Nx-groups have increased NF-κB binding activity and tumor necrosis factor-alpha (TNF-α) levels in the hippocampus and frontal cortex, with these changes more pronounced in the Nx-CI group frontal cortex. In addition, the Nx-CI group showed significantly increased CSF glucocorticoid levels and TNF-α /IL-10 ratio compared to the Sham group. Klotho levels were decreased in Nx-CI frontal cortex but not in hippocampus, when compared to Nx-M and Sham groups. Overall, these results suggest that neuroinflammation mediated by frontal cortex NF-κB, TNF-α and KLOTHO signaling may contribute to Nx-induced CI in rats.


Cognition Disorders/metabolism , Glucuronidase/metabolism , NF-kappa B/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Animals , Attention , Brain/metabolism , Cognition Disorders/etiology , Glucuronidase/cerebrospinal fluid , Glucuronidase/genetics , Interleukin-10/genetics , Interleukin-10/metabolism , Klotho Proteins , Male , Memory , NF-kappa B/genetics , Nephrectomy/adverse effects , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/genetics
18.
Neurobiol Aging ; 36(5): 1914-23, 2015 May.
Article En | MEDLINE | ID: mdl-25818175

Chronic neuroinflammation is a common characteristic of neurodegenerative diseases, and lipopolysaccharide (LPS) signaling is linked to glutamate-nitric oxide-Na,K-ATPase isoforms pathway in central nervous system (CNS) and also causes neuroinflammation. Intermittent fasting (IF) induces adaptive responses in the brain that can suppress inflammation, but the age-related effect of IF on LPS modulatory influence on nitric oxide-Na,K-ATPase isoforms is unknown. This work compared the effects of LPS on the activity of α1,α2,3 Na,K-ATPase, nitric oxide synthase gene expression and/or activity, cyclic guanosine monophosphate, 3-nitrotyrosine-containing proteins, and levels of thiobarbituric acid-reactive substances in CNS of young and older rats submitted to the IF protocol for 30 days. LPS induced an age-related effect in neuronal nitric oxide synthase activity, cyclic guanosine monophosphate, and levels of thiobarbituric acid-reactive substances in rat hippocampus that was linked to changes in α2,3-Na,K-ATPase activity, 3-nitrotyrosine proteins, and inducible nitric oxide synthase gene expression. IF induced adaptative cellular stress-response signaling pathways reverting LPS effects in rat hippocampus of young and older rats. The results suggest that IF in both ages would reduce the risk for deficits on brain function and neurodegenerative disorders linked to inflammatory response in the CNS.


Aging/metabolism , Fasting/physiology , Hippocampus/metabolism , Lipopolysaccharides/toxicity , Oxidative Stress/physiology , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Hippocampus/pathology , Male , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/prevention & control , Neurogenic Inflammation/etiology , Nitric Oxide/metabolism , Nitric Oxide Synthase/metabolism , Nucleotides, Cyclic/metabolism , Rats, Wistar , Thiobarbiturates/metabolism , Tyrosine/analogs & derivatives , Tyrosine/metabolism
19.
J Neuroinflammation ; 11: 218, 2014 Dec 31.
Article En | MEDLINE | ID: mdl-25551197

BACKGROUND: Ouabain (OUA) is a newly recognized hormone that is synthesized in the adrenal cortex and hypothalamus. Low doses of OUA can activate a signaling pathway by interaction with Na,K-ATPase, which is protective against a number of insults. OUA has central and peripheral anti-inflammatory effects. Lipopolysaccharide (LPS), via toll-like receptor 4 activation, is a widely used model to induce systemic inflammation. This study used a low OUA dose to evaluate its effects on inflammation induced by LPS injection in rats. METHODS: Adult male Wistar rats received acute intraperitoneal (ip) OUA (1.8 µg/kg) or saline 20 minutes before LPS (200 µg/kg, ip) or saline injection. Some of the animals had their femoral artery catheterized in order to assess arterial blood pressure values before and after OUA administration. Na,K-ATPase activity, cytokine mRNA levels, apoptosis-related proteins, NF-κB activation brain-derived neurotrophic factor BDNF, corticosterone and TNF-α levels were measured. RESULTS: OUA pretreatment decreased mRNA levels of the pro-inflammatory cytokines, inducible nitric oxide synthase (iNOS) and IL-1ß, which are activated by LPS in the hippocampus, but with no effect on serum measures of these factors. None of these OUA effects were linked to Na,K-ATPase activity. The involvement of the inflammatory transcription factor NF-κB in the OUA effect was indicated by its prevention of LPS-induced nuclear translocation of the NF-κB subunit, RELA (p65), as well as the decreased cytosol levels of the NF-κB inhibitor, IKB, in the hippocampus. OUA pretreatment reversed the LPS-induced glial fibrillary acidic protein (GFAP) activation and associated inflammation in the dentate gyrus. OUA also prevented LPS-induced increases in the hippocampal Bax/Bcl2 ratio suggesting an anti-apoptotic action in the brain. CONCLUSION: Our results suggest that a low dose of OUA has an important anti-inflammatory effect in the rat hippocampus. This effect was associated with decreased GFAP induction by LPS in the dentate gyrus, a brain area linked to adult neurogenesis.


Enzyme Inhibitors/pharmacology , Hippocampus/immunology , Inflammation/drug therapy , Ouabain/pharmacology , Signal Transduction/immunology , Sodium-Potassium-Exchanging ATPase/immunology , Animals , Disease Models, Animal , Enzyme Inhibitors/administration & dosage , Hippocampus/drug effects , Inflammation/chemically induced , Lipopolysaccharides/immunology , Male , Ouabain/administration & dosage , Rats , Rats, Wistar , Signal Transduction/drug effects , Sodium-Potassium-Exchanging ATPase/drug effects
20.
Age (Dordr) ; 35(2): 331-42, 2013 Apr.
Article En | MEDLINE | ID: mdl-22278206

Aging is associated with an increased susceptibility to neurodegenerative disorders which has been linked to chronic inflammation. This process generates oxygen-reactive species, ultimately responsible for a process known as oxidative stress, leading to changes in nitric oxide (NO), and cyclic guanosine monophosphate (cyclic GMP) signaling pathway. In previous studies, we showed that human aging was associated with an increase in NO Synthase (NOS) activity, a decrease in basal cyclic GMP levels in human platelets, and an increase in thiobarbituric acid-reactant substances (TBARS) in erythrocytes. The aim of the present work was to evaluate NOS activity, TBARS and cyclic GMP levels in hippocampus and frontal cortex and its correlation to platelets and erythrocytes of 4-, 12-, and 24-month-old rats. The result showed an age-related decrease in cyclic GMP levels which was linked to an increase in NOS activity and TBARS in both central areas as well as in platelets and erythrocytes of rats. The present data confirmed our previous studies performed in human platelets and erythrocytes and validate NOS activity and cyclic GMP in human platelet as well as TBARS in erythrocytes as biomarkers to study age-related disorders and new anti-aging therapies.


Aging/metabolism , Blood Platelets/metabolism , Cyclic GMP/metabolism , Erythrocytes/metabolism , Frontal Lobe/metabolism , Hippocampus/metabolism , Nitric Oxide/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Analysis of Variance , Animals , Biomarkers/metabolism , Male , Oxidative Stress , Rats , Rats, Wistar
...