Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
JMIR Ment Health ; 11: e53714, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167782

ABSTRACT

BACKGROUND: Mental stress and its consequent mental health disorders (MDs) constitute a significant public health issue. With the advent of machine learning (ML), there is potential to harness computational techniques for better understanding and addressing mental stress and MDs. This comprehensive review seeks to elucidate the current ML methodologies used in this domain to pave the way for enhanced detection, prediction, and analysis of mental stress and its subsequent MDs. OBJECTIVE: This review aims to investigate the scope of ML methodologies used in the detection, prediction, and analysis of mental stress and its consequent MDs. METHODS: Using a rigorous scoping review process with PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines, this investigation delves into the latest ML algorithms, preprocessing techniques, and data types used in the context of stress and stress-related MDs. RESULTS: A total of 98 peer-reviewed publications were examined for this review. The findings highlight that support vector machine, neural network, and random forest models consistently exhibited superior accuracy and robustness among all ML algorithms examined. Physiological parameters such as heart rate measurements and skin response are prevalently used as stress predictors due to their rich explanatory information concerning stress and stress-related MDs, as well as the relative ease of data acquisition. The application of dimensionality reduction techniques, including mappings, feature selection, filtering, and noise reduction, is frequently observed as a crucial step preceding the training of ML algorithms. CONCLUSIONS: The synthesis of this review identified significant research gaps and outlines future directions for the field. These encompass areas such as model interpretability, model personalization, the incorporation of naturalistic settings, and real-time processing capabilities for the detection and prediction of stress and stress-related MDs.


Subject(s)
Deep Learning , Machine Learning , Mental Disorders , Stress, Psychological , Humans , Stress, Psychological/diagnosis , Mental Disorders/diagnosis
2.
Transl Vis Sci Technol ; 13(8): 11, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39110574

ABSTRACT

Purpose: To predict 10-2 Humphrey visual fields (VFs) from 24-2 VFs and associated non-total deviation features using deep learning. Methods: We included 5189 reliable 24-2 and 10-2 VF pairs from 2236 patients, and 28,409 reliable pairs of macular OCT scans and 24-2 VF from 19,527 eyes of 11,560 patients. We developed a transformer-based deep learning model using 52 total deviation values and nine VF test features to predict 68 10-2 total deviation values. The mean absolute error, root mean square error, and the R2 were evaluation metrics. We further evaluated whether the predicted 10-2 VFs can improve the structure-function relationship between macular thinning and paracentral VF loss in glaucoma. Results: The average mean absolute error and R2 for 68 10-2 VF test points were 3.30 ± 0.52 dB and 0.70 ± 0.11, respectively. The accuracy was lower in the inferior temporal region. The model placed greater emphasis on 24-2 VF points near the central fixation point when predicting the 10-2 VFs. The inclusion of nine VF test features improved the mean absolute error and R2 up to 0.17 ± 0.06 dB and 0.01 ± 0.01, respectively. Age was the most important 24-2 VF test parameter for 10-2 VF prediction. The predicted 10-2 VFs achieved an improved structure-function relationship between macular thinning and paracentral VF loss, with the R2 at the central 4, 12, and 16 locations of 24-2 VFs increased by 0.04, 0.05 and 0.05, respectively (P < 0.001). Conclusions: The 10-2 VFs may be predicted from 24-2 data. Translational Relevance: The predicted 10-2 VF has the potential to improve glaucoma diagnosis.


Subject(s)
Deep Learning , Glaucoma , Tomography, Optical Coherence , Visual Field Tests , Visual Fields , Humans , Visual Field Tests/methods , Visual Fields/physiology , Female , Male , Middle Aged , Glaucoma/physiopathology , Glaucoma/diagnosis , Tomography, Optical Coherence/methods , Aged , Adult , Vision Disorders/physiopathology , Vision Disorders/diagnosis
3.
Transl Vis Sci Technol ; 12(10): 13, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37844261

ABSTRACT

Purpose: Circumpapillary retinal nerve fiber layer thickness (RNFLT) measurement aids in the clinical diagnosis of glaucoma. Spectral domain optical coherence tomography (SD-OCT) machines measure RNFLT and provide normative color-coded plots. In this retrospective study, we investigate whether normative percentiles of RNFLT (pRNFLT) from Spectralis SD-OCT improve prediction of glaucomatous visual field loss over raw RNFLT. Methods: A longitudinal database containing OCT scans and visual fields from Massachusetts Eye & Ear glaucoma clinic patients was generated. Reliable OCT-visual field pairs were selected. Spectralis OCT normative distributions were extracted from machine printouts. Supervised machine learning models compared predictive performance between pRNFLT and raw RNFLT inputs. Regional structure-function associations were assessed with univariate regression to predict mean deviation (MD). Multivariable classification predicted MD, pattern standard deviation, MD change per year, and glaucoma hemifield test. Results: There were 3016 OCT-visual field pairs that met the reliability criteria. Spectralis norms were found to be independent of age, sex, and ocular magnification. Regional analysis showed significant decrease in R2 from pRNFLT models compared to raw RNFLT models in inferotemporal sectors, across multiple regressors. In multivariable classification, there were no significant improvements in area under the curve of receiver operating characteristic curve (ROC-AUC) score with pRNFLT models compared to raw RNFLT models. Conclusions: Our results challenge the assumption that normative percentiles from OCT machines improve prediction of glaucomatous visual field loss. Raw RNFLT alone shows strong prediction, with no models presenting improvement by the manufacturer norms. This may result from insufficient patient stratification in tested norms. Translational Relevance: Understanding correlation of normative databases to visual function may improve clinical interpretation of OCT data.


Subject(s)
Glaucoma , Visual Fields , Humans , Retrospective Studies , Reproducibility of Results , Retinal Ganglion Cells , Nerve Fibers , Glaucoma/diagnosis , Vision Disorders/diagnosis , Tomography, Optical Coherence/methods
4.
Transl Vis Sci Technol ; 12(2): 6, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36745440

ABSTRACT

Purpose: Artificial intelligence (AI) methods are changing all areas of research and have a variety of capabilities of analysis in ophthalmology, specifically in visual fields (VFs) to detect or predict vision loss progression. Whereas most of the AI algorithms are implemented in Python language, which offers numerous open-source functions and algorithms, the majority of algorithms in VF analysis are offered in the R language. This paper introduces PyVisualFields, a developed package to address this gap and make available VF analysis in the Python language. Methods: For the first version, the R libraries for VF analysis provided by vfprogression and visualFields packages are analyzed to define the overlaps and distinct functions. Then, we defined and translated this functionality into Python with the help of the wrapper library rpy2. Besides maintaining, the subsequent versions' milestones are established, and the third version will be R-independent. Results: The developed Python package is available as open-source software via the GitHub repository and is ready to be installed from PyPI. Several Jupyter notebooks are prepared to demonstrate and describe the capabilities of the PyVisualFields package in the categories of data presentation, normalization and deviation analysis, plotting, scoring, and progression analysis. Conclusions: We developed a Python package and demonstrated its functionality for VF analysis and facilitating ophthalmic research in VF statistical analysis, illustration, and progression prediction. Translational Relevance: Using this software package, researchers working on VF analysis can more quickly create algorithms for clinical applications using cutting-edge AI techniques.


Subject(s)
Artificial Intelligence , Visual Fields , Software , Algorithms , Proteomics
5.
Sensors (Basel) ; 22(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36560035

ABSTRACT

Incidents to pipes cause damage in water distribution systems (WDS) and access to all parts of the WDS is a challenging task. In this paper, we propose an integrated wireless robotic system for in-pipe missions that includes an agile, maneuverable, and size-adaptable (9-in to 22-in) in-pipe robot, "SmartCrawler", with 1.56 m/s maximum speed. We develop a two-phase motion control algorithm that enables reliable motion in straight and rotation in non-straight configurations of in-service WDS. We also propose a bi-directional wireless sensor module based on active radio frequency identification (RFID) working in 434 MHz carrier frequency and 120 kbps for up to 5 sensor measurements to enable wireless underground communication with the burial depth of 1.5 m. The integration of the proposed wireless sensor module and the two-phase motion controller demonstrates promising results for wireless control of the in-pipe robot and multi-parameter sensor transmission for in-pipe missions.

SELECTION OF CITATIONS
SEARCH DETAIL