Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Inorg Chem ; 63(29): 13191-13196, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38984973

ABSTRACT

Mo K-edge X-ray absorption spectroscopy (XAS) is used to probe the structure of wild-type Campylobacter jejuni nitrate reductase NapA and the C176A variant. The results of extended X-ray absorption fine structure (EXAFS) experiments on wt NapA support an oxidized Mo(VI) hexacoordinate active site coordinated by a single terminal oxo donor, four sulfur atoms from two separate pyranopterin dithiolene ligands, and an additional S atom from a conserved cysteine amino acid residue. We found no evidence of a terminal sulfido ligand in wt NapA. EXAFS analysis shows the C176A active site to be a 6-coordinate structure, and this is supported by EPR studies on C176A and small molecule analogs of Mo(V) enzyme forms. The SCys is replaced by a hydroxide or water ligand in C176A, and we find no evidence of a coordinated sulfhydryl (SH) ligand. Kinetic studies show that this variant has completely lost its catalytic activity toward nitrate. Taken together, the results support a critical role for the conserved C176 in catalysis and an oxygen atom transfer mechanism for the catalytic reduction of nitrate to nitrite that does not employ a terminal sulfido ligand in the catalytic cycle.


Subject(s)
Campylobacter jejuni , Catalytic Domain , Nitrate Reductase , Campylobacter jejuni/enzymology , Nitrate Reductase/chemistry , Nitrate Reductase/metabolism , Models, Molecular , X-Ray Absorption Spectroscopy
2.
Angew Chem Int Ed Engl ; 62(45): e202311790, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37733206

ABSTRACT

Mononuclear monodioxolene valence tautomeric (VT) cobalt complexes typically exist in their low spin (l.s.) CoIII (cat2- ) and high spin (h.s.) CoII (sq⋅- ) forms (cat2- =catecholato, and sq⋅- =seminquinonato forms of 3,5-di-t Bu-1,2-dioxolene), which reversibly interconvert via temperature-dependent intramolecular electron transfer. Typically, the remaining four coordination sites on cobalt are supported by a tetradentate ligand whose properties influence the temperature at which VT occurs. We report that replacing one chelating pyridyl arm of tris(2-pyridylmethyl)amine (tpa) with a weaker field ortho-anisole moiety facilitates access to a third magnetic state, and examine a series of related complexes. Variable temperature crystallographic, magnetic, calorimetric, and spectroscopic studies support that this third state is consistent with l.s. CoII (sq⋅- ). Thus, our ligand modifications not only provide access to the VT transition from l.s. CoIII (cat2- ) to l.s. CoII (sq⋅- ), but at higher temperatures, the complex undergoes spin crossover from l.s. CoII (sq⋅- ) to h.s. CoII (sq⋅- ), representing the first example of two-step magnetic switching in a mononuclear monodioxolene cobalt complex. We hypothesize that ligand dynamicity may facilitate access to the rarely observed l.s. CoII (sq⋅- ) intermediate state, suggesting a new design criterion in the development of stimulus-responsive multi-state molecular switches.

3.
Nat Chem ; 13(8): 758-765, 2021 08.
Article in English | MEDLINE | ID: mdl-34183818

ABSTRACT

The molybdenum cofactor (Moco) is found in the active site of numerous important enzymes that are critical to biological processes. The bidentate ligand that chelates molybdenum in Moco is the pyranopterin dithiolene (molybdopterin, MPT). However, neither the mechanism of molybdate insertion into MPT nor the structure of Moco prior to its insertion into pyranopterin molybdenum enzymes is known. Here, we report this final maturation step, where adenylated MPT (MPT-AMP) and molybdate are the substrates. X-ray crystallography of the Arabidopsis thaliana Mo-insertase variant Cnx1E S269D D274S identified adenylated Moco (Moco-AMP) as an unexpected intermediate in this reaction sequence. X-ray absorption spectroscopy revealed the first coordination sphere geometry of Moco trapped in the Cnx1E active site. We have used this structural information to deduce a mechanism for molybdate insertion into MPT-AMP. Given their high degree of structural and sequence similarity, we suggest that this mechanism is employed by all eukaryotic Mo-insertases.


Subject(s)
Arabidopsis Proteins , Coenzymes , Molybdenum , Oxidoreductases , Pteridines , Adenosine Monophosphate/analogs & derivatives , Arabidopsis/enzymology , Arabidopsis Proteins/chemistry , Coenzymes/chemistry , Crystallography, X-Ray , Models, Chemical , Molybdenum/chemistry , Molybdenum Cofactors , Oxidoreductases/chemistry , Pteridines/chemistry
4.
Inorg Chem ; 60(13): 9233-9237, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34111354

ABSTRACT

Two new desoxo molybdenum(V) complexes have been synthesized and characterized as models for the paramagnetic high-g split intermediate observed in the catalytic cycle of dimethyl sulfoxide reductase (DMSOR). Extended X-ray absorption fine structure (EXAFS) and electron paramagnetic resonance (EPR) data are used to provide new insight into the geometric and electronic structures of high-g split and other EPR-active type II/III DMSOR family enzyme forms. The results support a 6-coordinate [(PDT)2Mo(OH)(OSer)]- structure (PDT = pyranopterin dithiolene) for a high-g split with four S donors from two PDT ligands, a coordinated hydroxyl ligand, and a serinate O donor. This geometry orients the redox orbital toward the substrate access channel for the two-electron reduction of substrates.


Subject(s)
Coordination Complexes/metabolism , Iron-Sulfur Proteins/metabolism , Oxidoreductases/metabolism , Serine/metabolism , Biocatalysis , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Iron-Sulfur Proteins/chemistry , Ligands , Models, Molecular , Molecular Structure , Molybdenum/chemistry , Molybdenum/metabolism , Oxidation-Reduction , Oxidoreductases/chemistry , Serine/chemistry
5.
Met Ions Life Sci ; 202020 Mar 23.
Article in English | MEDLINE | ID: mdl-32851830

ABSTRACT

The last 20 years have seen a dramatic increase in our mechanistic understanding of the reactions catalyzed by pyranopterin Mo and W enzymes. These enzymes possess a unique cofactor (Moco) that contains a novel ligand in bioinorganic chemistry, the pyranopterin ene-1,2-dithiolate. A synopsis of Moco biosynthesis and structure is presented, along with our current understanding of the role Moco plays in enzymatic catalysis. Oxygen atom transfer (OAT) reactivity is discussed in terms of breaking strong metal-oxo bonds and the mechanism of OAT catalyzed by enzymes of the sulfite oxidase (SO) family that possess dioxo Mo(VI) active sites. OAT reactivity is also discussed in members of the dimethyl sulfoxide (DMSO) reductase family, which possess des-oxo Mo(IV) sites. Finally, we reveal what is known about hydride transfer reactivity in xanthine oxidase (XO) family enzymes and the formate dehydrogenases. The formal hydride transfer reactivity catalyzed by xanthine oxidase family enzymes is complex and cleaves substrate C-H bonds using a mechanism that is distinct from monooxygenases. The chapter primarily highlights developments in the field that have occurred since ~2000, which have contributed to our collective structural and mechanistic understanding of the three canonical pyranopterin Mo enzymes families: XO, SO, and DMSO reductase.


Subject(s)
Molybdenum/metabolism , Biocatalysis , Sulfite Oxidase , Tungsten
6.
J Am Chem Soc ; 142(6): 2721-2725, 2020 02 12.
Article in English | MEDLINE | ID: mdl-31989824

ABSTRACT

A combination of pulsed EPR, CW EPR, and X-ray absorption spectroscopies has been employed to probe the geometric and electronic structure of the E. coli periplasmic molybdenum-dependent methionine sulfoxide reductase (MsrP). 17O and 1H pulsed EPR spectra show that the as-isolated Mo(V) enzyme form does not possess an exchangeable H2O/OH- ligand bound to Mo as found in the sulfite oxidizing enzymes of the same family. The nature of the unusual CW EPR spectrum has been re-evaluated in light of new data on the MsrP-N45R variant and related small-molecule analogues of the active site. These data point to a novel "thiol-blocked" [(PDT)MoVO(SCys)(thiolate)]- structure, which is supported by new EXAFS data. We discuss these new results in the context of ligand-based and metal-based redox chemistry in the enzymatic oxygen atom transfer reaction.


Subject(s)
Methionine Sulfoxide Reductases/metabolism , Molybdenum/metabolism , Electron Spin Resonance Spectroscopy , Ligands , Oxidation-Reduction , X-Ray Absorption Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL