Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nat Genet ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858457

ABSTRACT

Despite substantial progress, causal variants are identified only for a minority of familial Parkinson's disease (PD) cases, leaving high-risk pathogenic variants unidentified1,2. To identify such variants, we uniformly processed exome sequencing data of 2,184 index familial PD cases and 69,775 controls. Exome-wide analyses converged on RAB32 as a novel PD gene identifying c.213C > G/p.S71R as a high-risk variant presenting in ~0.7% of familial PD cases while observed in only 0.004% of controls (odds ratio of 65.5). This variant was confirmed in all cases via Sanger sequencing and segregated with PD in three families. RAB32 encodes a small GTPase known to interact with LRRK2 (refs. 3,4). Functional analyses showed that RAB32 S71R increases LRRK2 kinase activity, as indicated by increased autophosphorylation of LRRK2 S1292. Here our results implicate mutant RAB32 in a key pathological mechanism in PD-LRRK2 kinase activity5-7-and thus provide novel insights into the mechanistic connections between RAB family biology, LRRK2 and PD risk.

2.
Nat Commun ; 15(1): 2497, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509062

ABSTRACT

Microglia play a pivotal role in neurodegenerative disease pathogenesis, but the mechanisms underlying microglia dysfunction and toxicity remain to be elucidated. To investigate the effect of neurodegenerative disease-linked genes on the intrinsic properties of microglia, we studied microglia-like cells derived from human induced pluripotent stem cells (iPSCs), termed iMGs, harboring mutations in profilin-1 (PFN1) that are causative for amyotrophic lateral sclerosis (ALS). ALS-PFN1 iMGs exhibited evidence of lipid dysmetabolism, autophagy dysregulation and deficient phagocytosis, a canonical microglia function. Mutant PFN1 also displayed enhanced binding affinity for PI3P, a critical signaling molecule involved in autophagic and endocytic processing. Our cumulative data implicate a gain-of-toxic function for mutant PFN1 within the autophagic and endo-lysosomal pathways, as administration of rapamycin rescued phagocytic dysfunction in ALS-PFN1 iMGs. These outcomes demonstrate the utility of iMGs for neurodegenerative disease research and implicate microglial vesicular degradation pathways in the pathogenesis of these disorders.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/metabolism , Microglia/metabolism , Induced Pluripotent Stem Cells/metabolism , Profilins/metabolism , Mutation
3.
bioRxiv ; 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37398081

ABSTRACT

Microglia play a pivotal role in neurodegenerative disease pathogenesis, but the mechanisms underlying microglia dysfunction and toxicity remain to be fully elucidated. To investigate the effect of neurodegenerative disease-linked genes on the intrinsic properties of microglia, we studied microglia-like cells derived from human induced pluripotent stem cells (iPSCs), termed iMGs, harboring mutations in profilin-1 (PFN1) that are causative for amyotrophic lateral sclerosis (ALS). ALS-PFN1 iMGs exhibited lipid dysmetabolism and deficits in phagocytosis, a critical microglia function. Our cumulative data implicate an effect of ALS-linked PFN1 on the autophagy pathway, including enhanced binding of mutant PFN1 to the autophagy signaling molecule PI3P, as an underlying cause of defective phagocytosis in ALS-PFN1 iMGs. Indeed, phagocytic processing was restored in ALS-PFN1 iMGs with Rapamycin, an inducer of autophagic flux. These outcomes demonstrate the utility of iMGs for neurodegenerative disease research and highlight microglia vesicular degradation pathways as potential therapeutic targets for these disorders.

4.
Brain ; 145(8): 2671-2676, 2022 08 27.
Article in English | MEDLINE | ID: mdl-35521889

ABSTRACT

Intermediate CAG (polyQ) expansions in the gene ataxin-2 (ATXN2) are now recognized as a risk factor for amyotrophic lateral sclerosis. The threshold for increased risk is not yet firmly established, with reports ranging from 27 to 31 repeats. We investigated the presence of ATXN2 polyQ expansions in 9268 DNA samples collected from people with amyotrophic lateral sclerosis, amyotrophic lateral sclerosis with frontotemporal dementia, frontotemporal dementia alone, Lewy body dementia and age matched controls. This analysis confirmed ATXN2 intermediate polyQ expansions of ≥31 as a risk factor for amyotrophic lateral sclerosis with an odds ratio of 6.31. Expansions were an even greater risk for amyotrophic lateral sclerosis with frontotemporal dementia (odds ratio 27.59) and a somewhat lesser risk for frontotemporal dementia alone (odds ratio 3.14). There was no increased risk for Lewy body dementia. In a subset of 1362 patients with amyotrophic lateral sclerosis with complete clinical data, we could not confirm previous reports of earlier onset of amyotrophic lateral sclerosis or shorter survival in 25 patients with expansions. These new data confirm ≥31 polyQ repeats in ATXN2 increase the risk for amyotrophic lateral sclerosis, and also for the first time show an even greater risk for amyotrophic lateral sclerosis with frontotemporal dementia. The lack of a more aggressive phenotype in amyotrophic lateral sclerosis patients with expansions has implications for ongoing gene-silencing trials for amyotrophic lateral sclerosis.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Lewy Body Disease , Ataxin-2 , Humans , Phenotype
5.
Cell Rep ; 39(1): 110598, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35385738

ABSTRACT

Understanding the pathogenic mechanisms of disease mutations is critical to advancing treatments. ALS-associated mutations in the gene encoding the microtubule motor KIF5A result in skipping of exon 27 (KIF5AΔExon27) and the encoding of a protein with a novel 39 amino acid residue C-terminal sequence. Here, we report that expression of ALS-linked mutant KIF5A results in dysregulated motor activity, cellular mislocalization, altered axonal transport, and decreased neuronal survival. Single-molecule analysis revealed that the altered C terminus of mutant KIF5A results in a constitutively active state. Furthermore, mutant KIF5A possesses altered protein and RNA interactions and its expression results in altered gene expression/splicing. Taken together, our data support the hypothesis that causative ALS mutations result in a toxic gain of function in the intracellular motor KIF5A that disrupts intracellular trafficking and neuronal homeostasis.


Subject(s)
Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/genetics , Axonal Transport/genetics , Gain of Function Mutation , Humans , Kinesins/genetics , Mutation/genetics
6.
PLoS One ; 8(4): e60788, 2013.
Article in English | MEDLINE | ID: mdl-23577159

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease resulting in severe muscle weakness and eventual death by respiratory failure. Although little is known about its pathogenesis, mutations in fused in sarcoma/translated in liposarcoma (FUS) are causative for familial ALS. FUS is a multifunctional protein that is involved in many aspects of RNA processing. To elucidate the role of FUS in ALS, we overexpressed wild-type and two mutant forms of FUS in HEK-293T cells, as well as knocked-down FUS expression. This was followed by RNA-Seq to identify genes which displayed differential expression or altered splicing patterns. Pathway analysis revealed that overexpression of wild-type FUS regulates ribosomal genes, whereas knock-down of FUS additionally affects expression of spliceosome related genes. Furthermore, cells expressing mutant FUS displayed global transcription patterns more similar to cells overexpressing wild-type FUS than to the knock-down condition. This observation suggests that FUS mutants do not contribute to the pathogenesis of ALS through a loss-of-function. Finally, our results demonstrate that the R521G and R522G mutations display differences in their influence on transcription and splicing. Taken together, these results provide additional insights into the function of FUS and how mutations contribute to the development of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Mutation , RNA-Binding Protein FUS/genetics , Sequence Analysis, RNA , Exons/genetics , HEK293 Cells , Humans , Introns/genetics , RNA, Small Interfering/genetics , RNA-Binding Protein FUS/deficiency
7.
Neurobiol Aging ; 34(6): 1708.e1-6, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23141414

ABSTRACT

Profilin 1 is a central regulator of actin dynamics. Mutations in the gene profilin 1 (PFN1) have very recently been shown to be the cause of a subgroup of amyotrophic lateral sclerosis (ALS). Here, we performed a large screen of US, Nordic, and German familial and sporadic ALS and frontotemporal dementia (FTLD) patients for PFN1 mutations to get further insight into the spectrum and pathogenic relevance of this gene for the complete ALS/FTLD continuum. Four hundred twelve familial and 260 sporadic ALS cases and 16 ALS/FTLD cases from Germany, the Nordic countries, and the United States were screened for PFN1 mutations. Phenotypes of patients carrying PFN1 mutations were studied. In a German ALS family we identified the novel heterozygous PFN1 mutation p.Thr109Met, which was absent in controls. This novel mutation abrogates a phosphorylation site in profilin 1. The recently described p.Gln117Gly sequence variant was found in another familial ALS patient from the United States. The ALS patients with mutations in PFN1 displayed spinal onset motor neuron disease without overt cognitive involvement. PFN1 mutations were absent in patients with motor neuron disease and dementia, and in patients with only FTLD. We provide further evidence that PFN1 mutations can cause ALS as a Mendelian dominant trait. Patients carrying PFN1 mutations reported so far represent the "classic" ALS end of the ALS-FTLD spectrum. The novel p.Thr109Met mutation provides additional proof-of-principle that mutant proteins involved in the regulation of cytoskeletal dynamics can cause motor neuron degeneration. Moreover, this new mutation suggests that fine-tuning of actin polymerization by phosphorylation of profilin 1 might be necessary for motor neuron survival.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/genetics , Mass Screening , Point Mutation/genetics , Profilins/genetics , Adult , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/epidemiology , Amyotrophic Lateral Sclerosis/metabolism , Cohort Studies , Female , Frontotemporal Dementia/epidemiology , Frontotemporal Dementia/metabolism , Germany/epidemiology , Humans , Male , Mass Screening/methods , Middle Aged , Pedigree , Phosphorylation/genetics , Profilins/metabolism , Sweden/epidemiology , United States/epidemiology , Young Adult
8.
Nature ; 488(7412): 499-503, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22801503

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder resulting from motor neuron death. Approximately 10% of cases are familial (FALS), typically with a dominant inheritance mode. Despite numerous advances in recent years, nearly 50% of FALS cases have unknown genetic aetiology. Here we show that mutations within the profilin 1 (PFN1) gene can cause FALS. PFN1 is crucial for the conversion of monomeric (G)-actin to filamentous (F)-actin. Exome sequencing of two large ALS families showed different mutations within the PFN1 gene. Further sequence analysis identified 4 mutations in 7 out of 274 FALS cases. Cells expressing PFN1 mutants contain ubiquitinated, insoluble aggregates that in many cases contain the ALS-associated protein TDP-43. PFN1 mutants also display decreased bound actin levels and can inhibit axon outgrowth. Furthermore, primary motor neurons expressing mutant PFN1 display smaller growth cones with a reduced F/G-actin ratio. These observations further document that cytoskeletal pathway alterations contribute to ALS pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Genetic Predisposition to Disease/genetics , Mutant Proteins/metabolism , Mutation/genetics , Profilins/genetics , Profilins/metabolism , Actins/metabolism , Amino Acid Sequence , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/metabolism , Animals , Axons/metabolism , Axons/pathology , Cells, Cultured , Exome/genetics , Female , Growth Cones/metabolism , High-Throughput Nucleotide Sequencing , Humans , Jews/genetics , Male , Mice , Models, Molecular , Molecular Sequence Data , Motor Neurons/cytology , Motor Neurons/metabolism , Mutant Proteins/genetics , Pedigree , Protein Conformation , Ubiquitination , White People/genetics
9.
Ann Neurol ; 68(1): 102-7, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20582942

ABSTRACT

Three clustered, homologous paraoxonase genes (PON1, PON2, and PON3) have roles in preventing lipid oxidation and detoxifying organophosphates. Recent reports describe a genetic association between the PON genes and sporadic amyotrophic lateral sclerosis (ALS). We now report that in genomic DNA from individuals with familial and sporadic ALS, we have identified at least 7 PON gene mutations that are predicted to alter PON function.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Aryldialkylphosphatase/genetics , Esterases/genetics , Mutation , Amino Acid Sequence , DNA Mutational Analysis , Family , Humans , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...