Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Pituitary ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960990

ABSTRACT

PURPOSE: Growth hormone (GH) is a central regulator of ß-cell proliferation, insulin secretion and sensitivity. Aim of this study was to investigate the effect of GH insensitivity on pancreatic ß-cell histomorphology and consequences for metabolism in vivo. METHODS: Pancreata from pigs with growth hormone receptor deficiency (GHR-KO, n = 12) were analyzed by unbiased quantitative stereology in comparison to wild-type controls (WT, n = 12) at 3 and 7-8.5 months of age. In vivo secretion capacity for insulin and glucose tolerance were assessed by intravenous glucose tolerance tests (ivGTTs) in GHR-KO (n = 3) and WT (n = 3) pigs of the respective age groups. RESULTS: Unbiased quantitative stereological analyses revealed a significant reduction in total ß-cell volume (83% and 73% reduction in young and adult GHR-KO vs. age-matched WT pigs; p < 0.0001) and volume density of ß-cells in the pancreas of GHR-KO pigs (42% and 39% reduction in young and adult GHR-KO pigs; p = 0.0018). GHR-KO pigs displayed a significant, age-dependent increase in the proportion of isolated ß-cells in the pancreas (28% in young and 97% in adult GHR-KO vs. age-matched WT pigs; p = 0.0009). Despite reduced insulin secretion in ivGTTs, GHR-KO pigs maintained normal glucose tolerance. CONCLUSION: GH insensitivity in GHR-KO pigs leads to decreased ß-cell volume and volume proportion of ß-cells in the pancreas, causing a reduced insulin secretion capacity. The increased proportion of isolated ß-cells in the pancreas of GHR-KO pigs highlights the dependency on GH stimulation for proper ß-cell maturation. Preserved glucose tolerance accomplished with decreased insulin secretion indicates enhanced sensitivity for insulin in GH insensitivity.

2.
Xenotransplantation ; 31(4): e12877, 2024.
Article in English | MEDLINE | ID: mdl-39077824

ABSTRACT

INTRODUCTION: Inflammatory responses and coagulation disorders are a relevant challenge for successful cardiac xenotransplantation on its way to the clinic. To cope with this, an effective and clinically practicable anti-inflammatory and anti-coagulatory regimen is needed. The inflammatory and coagulatory response can be reduced by genetic engineering of the organ-source pigs. Furthermore, there are several therapeutic strategies to prevent or reduce inflammatory responses and coagulation disorders following xenotransplantation. However, it is still unclear, which combination of drugs should be used in the clinical setting. To elucidate this, we present data from pig-to-baboon orthotopic cardiac xenotransplantation experiments using a combination of several anti-inflammatory drugs. METHODS: Genetically modified piglets (GGTA1-KO, hCD46/hTBM transgenic) were used for orthotopic cardiac xenotransplantation into captive-bred baboons (n = 14). All animals received an anti-inflammatory drug therapy including a C1 esterase inhibitor, an IL-6 receptor antagonist, a TNF-α inhibitor, and an IL-1 receptor antagonist. As an additive medication, acetylsalicylic acid and unfractionated heparin were administered. The immunosuppressive regimen was based on CD40/CD40L co-stimulation blockade. During the experiments, leukocyte counts, levels of C-reactive protein (CRP) as well as systemic cytokine and chemokine levels and coagulation parameters were assessed at multiple timepoints. Four animals were excluded from further data analyses due to porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV) infections (n = 2) or technical failures (n = 2). RESULTS: Leukocyte counts showed a relevant perioperative decrease, CRP levels an increase. In the postoperative period, leukocyte counts remained consistently within normal ranges, CRP levels showed three further peaks after about 35, 50, and 80 postoperative days. Analyses of cytokines and chemokines revealed different patterns. Some cytokines, like IL-8, increased about 2-fold in the perioperative period, but then decreased to levels comparable to the preoperative values or even lower. Other cytokines, such as IL-12/IL-23, decreased in the perioperative period and stayed at these levels. Besides perioperative decreases, there were no relevant alterations observed in coagulation parameters. In summary, all parameters showed an unremarkable course with regard to inflammatory responses and coagulation disorders following cardiac xenotransplantation and thus showed the effectiveness of our approach. CONCLUSION: Our preclinical experience with the anti-inflammatory drug therapy proved that controlling of inflammation and coagulation disorders in xenotransplantation is possible and well-practicable under the condition that transmission of pathogens, especially of PCMV/PRV to the recipient is prevented because PCMV/PRV also induces inflammation and coagulation disorders. Our anti-inflammatory regimen should also be applicable and effective in the clinical setting of cardiac xenotransplantation.


Subject(s)
Animals, Genetically Modified , Heart Transplantation , Inflammation , Papio , Transplantation, Heterologous , Animals , Transplantation, Heterologous/methods , Heart Transplantation/methods , Swine , Inflammation/immunology , Blood Coagulation/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Humans , Heterografts/immunology , Galactosyltransferases/genetics , Immunosuppressive Agents/pharmacology , Cytokines/metabolism
3.
Adv Sci (Weinh) ; : e2401385, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884159

ABSTRACT

Type 1 diabetes mellitus (T1DM) is characterized by absolute insulin deficiency primarily due to autoimmune destruction of pancreatic ß-cells. The prevailing treatment for T1DM involves daily subcutaneous insulin injections, but a substantial proportion of patients face challenges such as severe hypoglycemic episodes and poorly controlled hyperglycemia. For T1DM patients, a more effective therapeutic option involves the replacement of ß-cells through allogeneic transplantation of either the entire pancreas or isolated pancreatic islets. Unfortunately, the scarcity of transplantable human organs has led to a growing list of patients waiting for an islet transplant. One potential alternative is xenotransplantation of porcine pancreatic islets. However, due to inter-species molecular incompatibilities, porcine tissues trigger a robust immune response in humans, leading to xenograft rejection. Several promising strategies aim to overcome this challenge and enhance the long-term survival and functionality of xenogeneic islet grafts. These strategies include the use of islets derived from genetically modified pigs, immunoisolation of islets by encapsulation in biocompatible materials, and the creation of an immunomodulatory microenvironment by co-transplanting islets with accessory cells or utilizing immunomodulatory biomaterials. This review concentrates on delineating the primary obstacles in islet xenotransplantation and elucidates the fundamental principles and recent breakthroughs aimed at addressing these challenges.

4.
Dis Model Mech ; 17(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38900131

ABSTRACT

Growing evidence shows that the lung is an organ prone to injury by diabetes mellitus. However, the molecular mechanisms of these pulmonary complications have not yet been characterized comprehensively. To systematically study the effects of insulin deficiency and hyperglycaemia on the lung, we combined proteomics and lipidomics with quantitative histomorphological analyses to compare lung tissue samples from a clinically relevant pig model for mutant INS gene-induced diabetes of youth (MIDY) with samples from wild-type littermate controls. Among others, the level of pulmonary surfactant-associated protein A (SFTPA1), a biomarker of lung injury, was moderately elevated. Furthermore, key proteins related to humoral immune response and extracellular matrix organization were significantly altered in abundance. Importantly, a lipoxygenase pathway was dysregulated as indicated by 2.5-fold reduction of polyunsaturated fatty acid lipoxygenase ALOX15 levels, associated with corresponding changes in the levels of lipids influenced by this enzyme. Our multi-omics study points to an involvement of reduced ALOX15 levels and an associated lack of eicosanoid switching as mechanisms contributing to a proinflammatory milieu in the lungs of subjects with diabetes mellitus.


Subject(s)
Arachidonate 15-Lipoxygenase , Lung , Animals , Lung/pathology , Lung/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Proteomics , Lipidomics , Swine , Diabetes Complications/pathology , Diabetes Complications/metabolism , Diabetes Mellitus/pathology , Diabetes Mellitus/metabolism , Diabetes Mellitus/genetics , Sus scrofa , Multiomics
5.
Xenotransplantation ; 31(2): e12858, 2024.
Article in English | MEDLINE | ID: mdl-38646921

ABSTRACT

One of the prerequisites for successful organ xenotransplantation is a reasonable size match between the porcine organ and the recipient's organ to be replaced. Therefore, the selection of a suitable genetic background of source pigs is important. In this study, we investigated body and organ growth, cardiac function, and genetic diversity of a colony of Auckland Island pigs established at the Center for Innovative Medical Models (CiMM), LMU Munich. Male and female Auckland Island pig kidney cells (selected to be free of porcine endogenous retrovirus C) were imported from New Zealand, and founder animals were established by somatic cell nuclear transfer (SCNT). Morphologically, Auckland Island pigs have smaller body stature compared to many domestic pig breeds, rendering their organ dimensions well-suited for human transplantation. Furthermore, echocardiography assessments of Auckland Island pig hearts indicated normal structure and functioning across various age groups throughout the study. Single nucleotide polymorphism (SNP) analysis revealed higher runs of homozygosity (ROH) in Auckland Island pigs compared to other domestic pig breeds and demonstrated that the entire locus coding the swine leukocyte antigens (SLAs) was homozygous. Based on these findings, Auckland Island pigs represent a promising genetic background for organ xenotransplantation.


Subject(s)
Genetic Variation , Swine , Transplantation, Heterologous , New Zealand , Swine/genetics , Animals , Male , Female , Humans , Heart/anatomy & histology , Heart/diagnostic imaging , Echocardiography , Genotype , Homozygote
6.
Am J Transplant ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38432328

ABSTRACT

Allogeneic intraportal islet transplantation (ITx) has become an established treatment for patients with poorly controlled type 1 diabetes. However, the loss of viable beta-cell mass after transplantation remains a major challenge. Therefore, noninvasive imaging methods for long-term monitoring of the transplant fate are required. In this study, [68Ga]Ga-DOTA-exendin-4 positron emission tomography/computed tomography (PET/CT) was used for repeated monitoring of allogeneic neonatal porcine islets (NPI) after intraportal transplantation into immunosuppressed genetically diabetic pigs. NPI transplantation (3320-15,000 islet equivalents per kg body weight) led to a reduced need for exogenous insulin therapy and finally normalization of blood glucose levels in 3 out of 4 animals after 5 to 10 weeks. Longitudinal PET/CT measurements revealed a significant increase in standard uptake values in graft-bearing livers. Histologic analysis confirmed the presence of well-engrafted, mature islet clusters in the transplanted livers. Our study presents a novel large animal model for allogeneic intraportal ITx. A relatively small dose of NPIs was sufficient to normalize blood glucose levels in a clinically relevant diabetic pig model. [68Ga]Ga-DOTA-exendin-4 PET/CT proved to be efficacious for longitudinal monitoring of islet transplants. Thus, it could play a crucial role in optimizing ITx as a curative therapy for type 1 diabetes.

7.
Annu Rev Anim Biosci ; 12: 369-390, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37906838

ABSTRACT

End-stage organ failure can result from various preexisting conditions and occurs in patients of all ages, and organ transplantation remains its only treatment. In recent years, extensive research has been done to explore the possibility of transplanting animal organs into humans, a process referred to as xenotransplantation. Due to their matching organ sizes and other anatomical and physiological similarities with humans, pigs are the preferred organ donor species. Organ rejection due to host immune response and possible interspecies infectious pathogen transmission have been the biggest hurdles to xenotransplantation's success. Use of genetically engineered pigs as tissue and organ donors for xenotransplantation has helped to address these hurdles. Although several preclinical trials have been conducted in nonhuman primates, some barriers still exist and demand further efforts. This review focuses on the recent advances and remaining challenges in organ and tissue xenotransplantation.


Subject(s)
Organ Transplantation , Transplants , Animals , Humans , Swine , Transplantation, Heterologous/veterinary , Organ Transplantation/veterinary , Genetic Engineering/veterinary
8.
Xenotransplantation ; 30(5): e12820, 2023.
Article in English | MEDLINE | ID: mdl-37735958

ABSTRACT

Xenotransplantation is a promising approach to reduce organ shortage, while genetic modification of donor pigs has significantly decreased the immunogenic burden of xenotransplants, organ rejection is still a hurdle. Genetically modified pig organs are used in xenotransplantation research, and the first clinical pig-to-human heart transplantation was performed in 2022. However, the impact of genetic modification has not been investigated on a cellular level yet. Endothelial cells (EC) and their sugar-rich surface known as the glycocalyx are the first barrier encountering the recipient's immune system, making them a target for rejection. We have previously shown that wild type venous but not arterial EC were protected against heparan sulfate (HS) shedding after activation with human serum or human tumor necrosis factor alpha (TNF𝛼). Using a 2D microfluidic system we investigated the glycocalyx dynamics of genetically modified porcine arterial and venous EC (Gal𝛼1,3 Gal knock-out, transgenic for human CD46 and thrombomodulin, GTKO/hCD46/hTM) after activation with human serum or human TNF𝛼. Interestingly, we observed that GTKO/hCD46/hTM arterial cells, additionally to venous cells, do not shed HS. Unscathed HS on GTKO/hCD46/hTM EC correlated with reduced complement deposition, suggesting that protection against complement activation contributes to maintaining an intact glycocalyx layer on arterial EC. This protection was lost on GTKO/hCD46/hTM cells after simultaneous perfusion with human serum and human TNF𝛼. HS shedding on arterial cells and increased complement deposition on both arterial and venous cells was observed. These findings suggest that GTKO/hCD46/hTM EC revert to a proinflammatory phenotype in an inflammatory xenotransplantation setting, potentially favoring transplant rejection.


Subject(s)
Endothelial Cells , Glycocalyx , Animals , Humans , Swine , Transplantation, Heterologous , Animals, Genetically Modified , Complement System Proteins
9.
Mol Ther Nucleic Acids ; 33: 444-453, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37588685

ABSTRACT

Mammalian artificial chromosomes have enabled the introduction of extremely large amounts of genetic information into animal cells in an autonomously replicating, nonintegrating format. However, the evaluation of human artificial chromosomes (HACs) as novel tools for curing intractable hereditary disorders has been hindered by the limited efficacy of the delivery system. We generated dystrophin gene knockout (DMD-KO) pigs harboring the HAC bearing the entire human DMD via a somatic cell cloning procedure (DYS-HAC-cloned pig). Restored human dystrophin expression was confirmed by immunofluorescence staining in the skeletal muscle of the DYS-HAC-cloned pigs. Viability at the first month postpartum of the DYS-HAC-cloned pigs, including motor function in the hind leg and serum creatinine kinase level, was improved significantly when compared with that in the original DMD-KO pigs. However, decrease in systemic retention of the DYS-HAC vector and limited production of the DMD protein might have caused severe respiratory impairment with general prostration by 3 months postpartum. The results demonstrate that the use of transchromosomic cloned pigs permitted a straightforward estimation of the efficacy of the DYS-HAC carried in affected tissues/organs in a large-animal disease model, providing novel insights into the therapeutic application of exogenous mammalian artificial chromosomes.

10.
Proc Natl Acad Sci U S A ; 120(29): e2301250120, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37428903

ABSTRACT

Duchenne muscular dystrophy (DMD) is a fatal X-linked disease caused by mutations in the DMD gene, leading to complete absence of dystrophin and progressive degeneration of skeletal musculature and myocardium. In DMD patients and in a corresponding pig model with a deletion of DMD exon 52 (DMDΔ52), expression of an internally shortened dystrophin can be achieved by skipping of DMD exon 51 to reframe the transcript. To predict the best possible outcome of this strategy, we generated DMDΔ51-52 pigs, additionally representing a model for Becker muscular dystrophy (BMD). DMDΔ51-52 skeletal muscle and myocardium samples stained positive for dystrophin and did not show the characteristic dystrophic alterations observed in DMDΔ52 pigs. Western blot analysis confirmed the presence of dystrophin in the skeletal muscle and myocardium of DMDΔ51-52 pigs and its absence in DMDΔ52 pigs. The proteome profile of skeletal muscle, which showed a large number of abundance alterations in DMDΔ52 vs. wild-type (WT) samples, was normalized in DMDΔ51-52 samples. Cardiac function at age 3.5 mo was significantly reduced in DMDΔ52 pigs (mean left ventricular ejection fraction 58.8% vs. 70.3% in WT) but completely rescued in DMDΔ51-52 pigs (72.3%), in line with normalization of the myocardial proteome profile. Our findings indicate that ubiquitous deletion of DMD exon 51 in DMDΔ52 pigs largely rescues the rapidly progressing, severe muscular dystrophy and the reduced cardiac function of this model. Long-term follow-up studies of DMDΔ51-52 pigs will show if they develop symptoms of the milder BMD.


Subject(s)
Muscular Dystrophy, Duchenne , Animals , Swine , Muscular Dystrophy, Duchenne/metabolism , Dystrophin/genetics , Dystrophin/metabolism , Proteome/metabolism , Stroke Volume , Ventricular Function, Left , Muscle, Skeletal/metabolism , Exons/genetics
11.
Mol Metab ; 75: 101768, 2023 09.
Article in English | MEDLINE | ID: mdl-37414142

ABSTRACT

OBJECTIVE: To gain mechanistic insights into adverse effects of maternal hyperglycemia on the liver of neonates, we performed a multi-omics analysis of liver tissue from piglets developed in genetically diabetic (mutant INS gene induced diabetes of youth; MIDY) or wild-type (WT) pigs. METHODS: Proteome, metabolome and lipidome profiles of liver and clinical parameters of serum samples from 3-day-old WT piglets (n = 9) born to MIDY mothers (PHG) were compared with those of WT piglets (n = 10) born to normoglycemic mothers (PNG). Furthermore, protein-protein interaction network analysis was used to reveal highly interacting proteins that participate in the same molecular mechanisms and to relate these mechanisms with human pathology. RESULTS: Hepatocytes of PHG displayed pronounced lipid droplet accumulation, although the abundances of central lipogenic enzymes such as fatty acid-synthase (FASN) were decreased. Additionally, circulating triglyceride (TG) levels were reduced as a trend. Serum levels of non-esterified free fatty acids (NEFA) were elevated in PHG, potentially stimulating hepatic gluconeogenesis. This is supported by elevated hepatic phosphoenolpyruvate carboxykinase (PCK1) and circulating alanine transaminase (ALT) levels. Even though targeted metabolomics showed strongly elevated phosphatidylcholine (PC) levels, the abundances of multiple key enzymes involved in major PC synthesis pathways - most prominently those from the Kennedy pathway - were paradoxically reduced in PHG liver. Conversely, enzymes involved in PC excretion and breakdown such as PC-specific translocase ATP-binding cassette 4 (ABCB4) and phospholipase A2 were increased in abundance. CONCLUSIONS: Our study indicates that maternal hyperglycemia without confounding obesity induces profound molecular changes in the liver of neonatal offspring. In particular, we found evidence for stimulated gluconeogenesis and hepatic lipid accumulation independent of de novo lipogenesis. Reduced levels of PC biosynthesis enzymes and increased levels of proteins involved in PC translocation or breakdown may represent counter-regulatory mechanisms to maternally elevated PC levels. Our comprehensive multi-omics dataset provides a valuable resource for future meta-analysis studies focusing on liver metabolism in newborns from diabetic mothers.


Subject(s)
Diabetes, Gestational , Hyperglycemia , Infant, Newborn , Pregnancy , Female , Animals , Humans , Swine , Adolescent , Glucose/metabolism , Lipid Metabolism , Amino Acids/metabolism , Multiomics , Liver/metabolism , Hyperglycemia/metabolism
12.
Nat Commun ; 14(1): 878, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36797282

ABSTRACT

Intrahepatic islet transplantation is the standard cell therapy for ß cell replacement. However, the shortage of organ donors and an unsatisfactory engraftment limit its application to a selected patients with type 1 diabetes. There is an urgent need to identify alternative strategies based on an unlimited source of insulin producing cells and innovative scaffolds to foster cell interaction and integration to orchestrate physiological endocrine function. We previously proposed the use of decellularized lung as a scaffold for ß cell replacement with the final goal of engineering a vascularized endocrine organ. Here, we prototyped this technology with the integration of neonatal porcine islet and healthy subject-derived blood outgrowth endothelial cells to engineer a xenogeneic vascularized endocrine pancreas. We validated ex vivo cell integration and function, its engraftment and performance in a preclinical model of diabetes. Results showed that this technology not only is able to foster neonatal pig islet maturation in vitro, but also to perform in vivo immediately upon transplantation and for over 18 weeks, compared to normal performance within 8 weeks in various state of the art preclinical models. Given the recent progress in donor pig genetic engineering, this technology may enable the assembly of immune-protected functional endocrine organs.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Islets of Langerhans Transplantation , Islets of Langerhans , Humans , Diabetes Mellitus, Type 1/therapy , Diabetes Mellitus, Type 1/metabolism , Endothelial Cells , Islets of Langerhans/physiology , Islets of Langerhans Transplantation/methods , Insulin-Secreting Cells/metabolism , Pancreas
13.
Hypertension ; 80(2): 440-450, 2023 02.
Article in English | MEDLINE | ID: mdl-36458545

ABSTRACT

BACKGROUND: Aldosterone-producing adenomas (APAs) are a major cause of primary aldosteronism, a condition of low-renin hypertension, in which aldosterone overproduction is usually driven by a somatic activating mutation in an ion pump or channel. TSPAN12 is differentially expressed in different subgroups of APAs suggesting a role in APA pathophysiology. Our objective was to determine the function of TSPAN12 (tetraspanin 12) in adrenal physiology and pathophysiology. METHODS: APA specimens, pig adrenals under dietary sodium modulation, and a human adrenocortical cell line HAC15 were used for functional characterization of TSPAN12 in vivo and in vitro. RESULTS: Gene ontology analysis of 21 APA transcriptomes dichotomized according to high versus low TSPAN12 transcript levels highlighted a function for TSPAN12 related to the renin-angiotensin system. TSPAN12 expression levels in a cohort of 30 APAs were inversely correlated with baseline plasma aldosterone concentrations (R=-0.47; P=0.009). In a pig model of renin-angiotensin system activation by dietary salt restriction, TSPAN12 mRNA levels and TSPAN12 immunostaining were markedly increased in the zona glomerulosa layer of the adrenal cortex. In vitro stimulation of human adrenocortical human adrenocortical cells with 10 nM angiotensin II for 6 hours caused a 1.6-fold±0.13 increase in TSPAN12 expression, which was ablated by 10 µM nifedipine (P=0.0097) or 30 µM W-7 (P=0.0022). Gene silencing of TSPAN12 in human adrenocortical cells demonstrated its inverse effect on aldosterone secretion under basal and angiotensin II stimulated conditions. CONCLUSIONS: Our findings show that TSPAN12 is a negative regulator of aldosterone production and could contribute to aldosterone overproduction in primary aldosteronism.


Subject(s)
Adenoma , Adrenal Cortex Neoplasms , Adrenocortical Adenoma , Hyperaldosteronism , Humans , Animals , Swine , Aldosterone/metabolism , Angiotensin II/pharmacology , Hyperaldosteronism/metabolism , Adrenocortical Adenoma/metabolism , Adrenal Cortex Neoplasms/metabolism , Adenoma/metabolism , Tetraspanins/genetics
14.
Mol Metab ; 66: 101595, 2022 12.
Article in English | MEDLINE | ID: mdl-36113773

ABSTRACT

OBJECTIVE: Pancreatic islets of Langerhans secrete hormones to regulate systemic glucose levels. Emerging evidence suggests that islet cells are functionally heterogeneous to allow a fine-tuned and efficient endocrine response to physiological changes. A precise description of the molecular basis of this heterogeneity, in particular linking animal models to human islets, is an important step towards identifying the factors critical for endocrine cell function in physiological and pathophysiological conditions. METHODS: In this study, we used single-cell RNA sequencing to profile more than 50'000 endocrine cells isolated from healthy human, pig and mouse pancreatic islets and characterize transcriptional heterogeneity and evolutionary conservation of those cells across the three species. We systematically delineated endocrine cell types and α- and ß-cell heterogeneity through prior knowledge- and data-driven gene sets shared across species, which altogether capture common and differential cellular properties, transcriptional dynamics and putative driving factors of state transitions. RESULTS: We showed that global endocrine expression profiles correlate, and that critical identity and functional markers are shared between species, while only approximately 20% of cell type enriched expression is conserved. We resolved distinct human α- and ß-cell states that form continuous transcriptional landscapes. These states differentially activate maturation and hormone secretion programs, which are related to regulatory hormone receptor expression, signaling pathways and different types of cellular stress responses. Finally, we mapped mouse and pig cells to the human reference and observed that the spectrum of human α- and ß-cell heterogeneity and aspects of such functional gene expression are better recapitulated in the pig than mouse data. CONCLUSIONS: Here, we provide a high-resolution transcriptional map of healthy human islet cells and their murine and porcine counterparts, which is easily queryable via an online interface. This comprehensive resource informs future efforts that focus on pancreatic endocrine function, failure and regeneration, and enables to assess molecular conservation in islet biology across species for translational purposes.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Humans , Swine , Mice , Animals , Islets of Langerhans/metabolism , Insulin-Secreting Cells/metabolism , Cell Communication , Hormones/metabolism
15.
Sci Rep ; 12(1): 9874, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35701501

ABSTRACT

Stem cell therapy has great potential for replacing beta-cell loss in diabetic patients. However, a key obstacle to cell therapy's success is to preserve viability and function of the engrafted cells. While several strategies have been developed to improve engrafted beta-cell survival, tools to evaluate the efficacy within the body by imaging are limited. Traditional labeling tools, such as GFP-like fluorescent proteins, have limited penetration depths in vivo due to tissue scattering and absorption. To circumvent this limitation, a near-infrared fluorescent mutant version of the DrBphP bacteriophytochrome, iRFP720, has been developed for in vivo imaging and stem/progenitor cell tracking. Here, we present the generation and characterization of an iRFP720 expressing human induced pluripotent stem cell (iPSC) line, which can be used for real-time imaging in various biological applications. To generate the transgenic cells, the CRISPR/Cas9 technology was applied. A puromycin resistance gene was inserted into the AAVS1 locus, driven by the endogenous PPP1R12C promoter, along with the CAG-iRFP720 reporter cassette, which was flanked by insulator elements. Proper integration of the transgene into the targeted genomic region was assessed by comprehensive genetic analysis, verifying precise genome editing. Stable expression of iRFP720 in the cells was confirmed and imaged by their near-infrared fluorescence. We demonstrated that the reporter iPSCs exhibit normal stem cell characteristics and can be efficiently differentiated towards the pancreatic lineage. As the genetically modified reporter cells show retained pluripotency and multilineage differentiation potential, they hold great potential as a cellular model in a variety of biological and pharmacological applications.


Subject(s)
Induced Pluripotent Stem Cells , Cell Differentiation/genetics , Gene Editing , Genes, Reporter , Humans , Promoter Regions, Genetic , Transgenes
16.
Biomedicines ; 10(6)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35740440

ABSTRACT

The transplantation of pancreatic islets can prevent severe long-term complications in diabetes mellitus type 1 patients. With respect to a shortage of donor organs, the transplantation of xenogeneic islets is highly attractive. To avoid rejection, islets can be encapsulated in immuno-protective hydrogel-macrocapsules, whereby 3D bioprinted structures with macropores allow for a high surface-to-volume ratio and reduced diffusion distances. In the present study, we applied 3D bioprinting to encapsulate the potentially clinically applicable neonatal porcine islet-like cell clusters (NICC) in alginate-methylcellulose. The material was additionally supplemented with bovine serum albumin or the human blood plasma derivatives platelet lysate and fresh frozen plasma. NICC were analysed for viability, proliferation, the presence of hormones, and the release of insulin in reaction to glucose stimulation. Bioprinted NICC are homogeneously distributed, remain morphologically intact, and show a comparable viability and proliferation to control NICC. The number of insulin-positive cells is comparable between the groups and over time. The amount of insulin release increases over time and is released in response to glucose stimulation over 4 weeks. In summary, we show the successful bioprinting of NICC and could demonstrate functionality over the long-term in vitro. Supplementation resulted in a trend for higher viability, but no additional benefit on functionality was observed.

17.
Neuromuscul Disord ; 32(7): 543-556, 2022 07.
Article in English | MEDLINE | ID: mdl-35659494

ABSTRACT

Duchenne muscular dystrophy (DMD) is a fatal X-linked disease caused by mutations in the DMD gene, leading to complete absence of dystrophin and progressive degeneration of skeletal muscles and heart. Animal models are essential for preclinical evaluation of novel diagnostic procedures and treatment strategies. Gene targeting/editing offers the possibility of developing tailored pig models for monogenic diseases. The first porcine DMD model was generated by deletion of DMD exon 52 (DMDΔ52) in cultured kidney cells, which were used for somatic cell nuclear transfer to produce DMDΔ52 offspring. The animals resembled clinical, biochemical, and pathological hallmarks of DMD, but died before sexual maturity, thus preventing their propagation by breeding. This limitation was overcome by the generation of female heterozygous DMDΔ52 carrier pigs, which allowed the establishment of a large breeding colony. In this overview, we summarize how porcine DMD models have been used for dissecting disease mechanisms, for validating multispectral optoacoustic tomography as an imaging modality for monitoring fibrosis, and for preclinical testing of a CRISPR/Cas9 based approach to restore an intact DMD reading frame. Particular advantages of porcine DMD models include their targeted design and the rapid disease progression with early cardiac involvement, facilitating translational studies in reasonable time frames.


Subject(s)
Muscular Dystrophy, Duchenne , Animals , CRISPR-Cas Systems , Disease Models, Animal , Dystrophin/genetics , Exons , Female , Gene Editing/methods , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Swine
18.
Cell Transplant ; 31: 9636897221080943, 2022.
Article in English | MEDLINE | ID: mdl-35466714

ABSTRACT

Current regimen to treat patients suffering from stress urinary incontinence often seems not to yield satisfactory improvement or may come with severe side effects. To overcome these hurdles, preclinical studies and clinical feasibility studies explored the potential of cell therapies successfully and raised high hopes for better outcome. However, other studies were rather disappointing. We therefore developed a novel cell injection technology to deliver viable cells in the urethral sphincter complex by waterjet instead of using injection needles. We hypothesized that the risk of tissue injury and loss of cells could be reduced by a needle-free injection technology. Muscle-derived cells were obtained from young male piglets and characterized. Upon expansion and fluorescent labeling, cells were injected into cadaveric tissue samples by either waterjet or injection needle. In other experiments, labeled cells were injected by waterjet in the urethra of living pigs and incubated for up to 7 days of follow-up. The analyses documented that the cells injected by waterjet in vitro were viable and proliferated well. Upon injection in live animals, cells appeared undamaged, showed defined cellular somata with distinct nuclei, and contained intact chromosomal DNA. Most importantly, by in vivo waterjet injections, a significantly wider cell distribution was observed when compared with needle injections (P < .05, n ≥ 12 samples). The success rates of waterjet cell application in living animals were significantly higher (≥95%, n = 24) when compared with needle injections, and the injection depth of cells in the urethra could be adapted to the need by adjusting waterjet pressures. We conclude that the novel waterjet technology injects viable muscle cells in tissues at distinct and predetermined depth depending on the injection pressure employed. After waterjet injection, loss of cells by full penetration or injury of the tissue targeted was reduced significantly in comparison with our previous studies employing needle injections.


Subject(s)
Muscle Cells , Needles , Animals , Humans , Male , Muscles , Swine , Technology , Urethra
19.
Xenotransplantation ; 29(1): e12719, 2022 01.
Article in English | MEDLINE | ID: mdl-34935207

ABSTRACT

BACKGROUND: Islet xenotransplantation is a promising concept for beta-cell replacement therapy. Reporter genes for noninvasive monitoring of islet engraftment, graft mass changes, long-term survival, and graft failure support the optimization of transplantation strategies. Near-infrared fluorescent protein (iRFP) is ideal for fluorescence imaging (FI) in tissue, but also for multispectral optoacoustic tomography (MSOT) with an even higher imaging depth. Therefore, we generated reporter pigs ubiquitously expressing iRFP. METHODS: CAG-iRPF720 transgenic reporter pigs were generated by somatic cell nuclear transfer from FACS-selected stable transfected donor cells. Neonatal pig islets (NPIs) were transplanted into streptozotocin-diabetic immunodeficient NOD-scid IL2Rgnull (NSG) mice. FI and MSOT were performed to visualize different numbers of NPIs and to evaluate associations between signal intensity and glycemia. MSOT was also tested in a large animal model. RESULTS: CAG-iRFP transgenic NPIs were functionally equivalent with wild-type NPIs. Four weeks after transplantation under the kidney capsule, FI revealed a twofold higher signal for 4000-NPI compared to 1000-NPI grafts. Ten weeks after transplantation, the fluorescence intensity of the 4000-NPI graft was inversely correlated with glycemia. After intramuscular transplantation into diabetic NSG mice, MSOT revealed clear dose-dependent signals for grafts of 750, 1500, and 3000 NPIs. Dose-dependent MSOT signals were also revealed in a pig model, with stronger signals after subcutaneous (depth ∼6 mm) than after submuscular (depth ∼15 mm) placement of the NPIs. CONCLUSIONS: Islets from CAG-iRFP transgenic pigs are fully functional and accessible to long-term monitoring by state-of-the-art imaging modalities. The novel reporter pigs will support the development and preclinical testing of novel matrices and engraftment strategies for porcine xeno-islets.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Animals , Animals, Genetically Modified , Blood Glucose , Heterografts , Islets of Langerhans Transplantation/methods , Mice , Mice, Inbred NOD , Staphylococcal Protein A , Swine , Transplantation, Heterologous/methods
20.
Genes (Basel) ; 12(12)2021 12 15.
Article in English | MEDLINE | ID: mdl-34946940

ABSTRACT

Worldwide, gestational diabetes affects 2-25% of pregnancies. Due to related disturbances of the maternal metabolism during the periconceptional period and pregnancy, children bear an increased risk for future diseases. It is well known that an aberrant intrauterine environment caused by elevated maternal glucose levels is related to elevated risks for increased birth weights and metabolic disorders in later life, such as obesity or type 2 diabetes. The complexity of disturbances induced by maternal diabetes, with multiple underlying mechanisms, makes early diagnosis or prevention a challenging task. Omics technologies allowing holistic quantification of several classes of molecules from biological fluids, cells, or tissues are powerful tools to systematically investigate the effects of maternal diabetes on the offspring in an unbiased manner. Differentially abundant molecules or distinct molecular profiles may serve as diagnostic biomarkers, which may also support the development of preventive and therapeutic strategies. In this review, we summarize key findings from state-of-the-art Omics studies addressing the impact of maternal diabetes on offspring health.


Subject(s)
Diabetes, Gestational/metabolism , Metabolic Diseases/etiology , Prenatal Exposure Delayed Effects/physiopathology , Biomarkers/metabolism , Birth Weight , Body Mass Index , Diabetes, Gestational/physiopathology , Female , Humans , Obesity , Pregnancy , Prenatal Exposure Delayed Effects/epidemiology , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL