Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-473223

ABSTRACT

Extracellular vesicles of endosomal origin, exosomes, mediate intercellular communication by transporting substrates with a variety of functions related to tissue homeostasis and disease. Their diagnostic and therapeutic potential has been recognized for diseases such as cancer in which signaling defects are prominent. However, it is unclear to what extent exosomes and their cargo inform the progression of infectious diseases. We recently defined a subset of exosomes termed defensosomes that are mobilized during bacterial infection in a manner dependent on autophagy proteins. Through incorporating protein receptors on their surface, defensosomes mediated host defense by binding and inhibiting pore-forming toxins secreted by bacterial pathogens. Given this capacity to serve as decoys that interfere with surface protein interactions, we investigated the role of defensosomes during infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19. Consistent with a protective function, exosomes containing high levels of the viral receptor ACE2 in bronchioalveolar lavage fluid from critically ill COVID-19 patients was associated with reduced ICU and hospitalization times. We found ACE2+ exosomes were induced by SARS-CoV-2 infection and activation of viral sensors in cell culture, which required the autophagy protein ATG16L1, defining these as defensosomes. We further demonstrate that ACE2+ defensosomes directly bind and block viral entry. These findings suggest that defensosomes may contribute to the antiviral response against SARS-CoV-2 and expand our knowledge on the regulation and effects of extracellular vesicles during infection.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-452680

ABSTRACT

Gastrointestinal effects associated with COVID-19 are highly variable for reasons that are not understood. In this study, we used intestinal organoid-derived cultures differentiated from primary human specimens as a model to examine inter-individual variability. Infection of intestinal organoids derived from different donors with SARS-CoV-2 resulted in orders of magnitude differences in virus replication in small intestinal and colonic organoid-derived monolayers. Susceptibility to infection correlated with ACE2 expression level and was independent of donor demographic or clinical features. ACE2 transcript levels in cell culture matched the amount of ACE2 in primary tissue indicating this feature of the intestinal epithelium is retained in the organoids. Longitudinal transcriptomics of organoid-derived monolayers identified a delayed yet robust interferon signature, the magnitude of which corresponded to the degree of SARS-CoV-2 infection. Interestingly, virus with the Omicron variant spike protein infected the organoids with the highest infectivity, suggesting increased tropism of the virus for intestinal tissue. These results suggest that heterogeneity in SARS-CoV-2 replication in intestinal tissues results from differences in ACE2 levels, which may underlie variable patient outcomes.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-452246

ABSTRACT

The microbial populations in the gut microbiome have recently been associated with COVID-19 disease severity. However, a causal impact of the gut microbiome on COVID-19 patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. Antibiotics and other treatments during COVID-19 can potentially confound microbiome associations. We therefore first demonstrate in a mouse model that SARS-CoV-2 infection can induce gut microbiome dysbiosis, which correlated with alterations to Paneth cells and goblet cells, and markers of barrier permeability. Comparison with stool samples collected from 96 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, paralleling our observations in the animal model. Specifically, we observed blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species in hospitalized COVID-19 patients. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data obtained from these patients indicates that bacteria may translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21253848

ABSTRACT

ObjectiveThe impact of medications on COVID-19 vaccine efficacy in IBD patients is unknown, as patients with immunosuppressed states and/or treated with immunosuppressants were excluded from vaccine trials. To address this, we evaluated serological responses to COVID-19 vaccination with the SARS-CoV-2 spike (S) mRNA BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (NIH-Moderna) vaccines in IBD patients enrolled in an ongoing SARS-CoV-2 sero-survey at the Icahn School of Medicine at Mount Sinai in New York City. DesignWe obtained sera from 48 patients who had undergone vaccination with one or two vaccine doses. Sera were tested for SARS-CoV-2 anti-RBD total immunoglobulins and IgG (Siemens COV2T and sCOVG assays), anti-Spike IgG (in-house ELISA), and anti-nucleocapsid antibodies (Roche). ResultsAll IBD patients (15/15) who completed two-dose vaccine schedules achieved seroconversion to high levels. Two IBD patients with history of COVID-19 infections and who were seropositive at baseline seroconverted to high levels after the first dose. Concurrent biologic use was 85% (41/48), including 33% of patients (16) on TNF antagonist monotherapy, 42% (17) on vedolizumab monotherapy, 6% (3) on vedolizumab combination therapy with thiopurine, and 8% (4) ustekinumab; 1 patient was receiving guselkumab for psoriasis. Three patients (6%) were on oral steroids at the time of vaccination. ConclusionIBD patients receiving biologics can seroconvert with robust serological responses after complete Pfizer-BioNTech and NIH-Moderna COVID-19 vaccination. In IBD-patients with previous SARS-CoV-2 seroconversion, a single dose of either vaccine can induce high index values, mirroring findings from the general population.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-21253615

ABSTRACT

Patients with immune-mediated inflammatory diseases (IMIDs) and acquired and genetic immunodeficiencies receiving therapeutic infusions are considered high risk for SARS-CoV-2 infection. However, the seroprevalance in this group and the safety of routine administrations at outpatient infusion centers are unknown. To determine the infection rate and clinical-social factors related to SARS-CoV-2 in asymptomatic patients with IMIDs and immunodeficiencies receiving routine non-cancer therapeutic infusions, we conducted a seroprevalence study at our outpatient infusion center. We report the first prospective SARS-CoV-2 sero-surveillance of 444 IBD/IMID, immunodeficiency, and immune competent patients at an outpatient infusion center in the U.S. showing lower seroprevalence in patients compared with the general population and provide clinical and social characteristics associated with seroprevalence in this group. These data suggest that patients can safely continue infusions at outpatient centers.

SELECTION OF CITATIONS
SEARCH DETAIL