Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 13(3)2022 02 25.
Article in English | MEDLINE | ID: mdl-35327976

ABSTRACT

The genus Betacoronavirus, consisting of four main subgenera (Embecovirus, Merbecovirus, Nobecovirus, and Sarbecovirus), encompasses all clinically significant coronaviruses (CoVs), including SARS, MERS, and the SARS-CoV-2 virus responsible for current COVID-19 pandemic. Very few molecular characteristics are known that are specific for the genus Betacoronavirus or its different subgenera. In this study, our analyses of the sequences of four essential proteins of CoVs, viz., spike, nucleocapsid, envelope, and RNA-dependent RNA polymerase (RdRp), identified ten novel molecular signatures consisting of conserved signature indels (CSIs) in these proteins which are specific for the genus Betacoronavirus or its subgenera. Of these CSIs, two 14-aa-conserved deletions found within the heptad repeat motifs 1 and 2 of the spike protein are specific for all betacoronaviruses, except for their shared presence in the highly infectious avian coronavirus. Six additional CSIs present in the nucleocapsid protein and one CSI in the RdRp protein are distinctive characteristics of either the Merbecovirus, Nobecovirus, or Sarbecovirus subgenera. In addition, a 4-aa insert is present in the spike protein, which is uniquely shared by all viruses from the subgenera Merbecovirus, Nobecovirus, and Sarbecovirus, but absent in Embecovirus and all other genera of CoVs. This molecular signature provides evidence that viruses from the three subgenera sharing this CSI are more closely related to each other, and they evolved after the divergence of embecoviruses and other CoVs. As all CSIs specific for different groups of CoVs are flanked by conserved regions, their sequences provide novel means for identifying the above groups of CoVs and for developing novel diagnostic tests. Furthermore, our analyses of the structures of the spike and nucleocapsid proteins show that all identified CSIs are localized in the surface-exposed loops of these protein. It is postulated that these surface loops, through their interactions with other cellular proteins/ligands, play important roles in the biology/pathology of these viruses.


Subject(s)
COVID-19 , Pandemics , Humans , Nucleocapsid/genetics , Phylogeny , SARS-CoV-2/genetics
2.
Front Plant Sci ; 13: 1061490, 2022.
Article in English | MEDLINE | ID: mdl-36910459

ABSTRACT

Introduction: Characterization of germplasm collections for the wheat leaf rust gene Lr34 previously defined five haplotypes in spring wheat. All resistant lines had a 3-bp TTC deletion (null) in exon 11, resulting in the absence of a phenylalanine residue in the ABC transporter, as well as a single nucleotide C (Tyrosine in Lr34+) to T (Histidine in Lr34-) transition in exon 12. A rare haplotype present in Odesskaja 13 and Koktunkulskaja 332, both of intermediate rust resistance, had the 3-bp deletion typical of Lr34+ in exon 11 but the T nucleotide of Lr34- in exon 12. Methods: To quantify the role of each mutation in leaf rust resistance, Odesskaja 13 and Koktunkulskaja 332 were crossed to Thatcher and its near-isogenic line Thatcher-Lr34 (RL6058). Single seed descent populations were generated and evaluated for rust resistance in six different rust nurseries. Results: The Odesskaja 13 progeny with the TTC/T haplotype were susceptible with an average severity rating of 62.3%, the null/T haplotype progeny averaged 39.7% and the null/C haplotype was highly resistant, averaging 13.3% severity. The numbers for the Koktunkulskaja 332 crosses were similar with 63.5%, 43.5% and 23.7% severity ratings, respectively. Differences between all classes in all crosses were statistically significant, indicating that both mutations are independently additive for leaf rust resistance. The three-dimensional structural models of LR34 were used to analyze the locations and putative interference of both amino acids with the transport channel. Koktunkulskaja 332 also segregated for marker csLV46 which is linked to Lr46. Rust severity in lines with Lr34+ and csLV46+ had significantly lower rust severity ratings than those without, indicating the additivity of the two loci. Discussion: This has implications for the deployment of Lr34 in wheat cultivars and for the basic understanding of this important wheat multi-pest durable resistance gene.

3.
PeerJ ; 9: e12434, 2021.
Article in English | MEDLINE | ID: mdl-35028194

ABSTRACT

Both SARS-CoV-2 and SARS coronaviruses (CoVs) are members of the subgenus Sarbecovirus. To understand the origin of SARS-CoV-2, sequences for the spike and nucleocapsid proteins from sarbecoviruses were analyzed to identify molecular markers consisting of conserved inserts or deletions (termed CSIs) that are specific for either a particular clade of Sarbecovirus or are commonly shared by two or more clades of these viruses. Three novel CSIs in the N-terminal domain (NTD) of the spike protein S1-subunit (S1-NTD) are uniquely shared by SARS-CoV-2, Bat-CoV-RaTG13 and most pangolin CoVs (SARS-CoV-2r clade). Three other sarbecoviruses viz. bat-CoVZXC21, -CoVZC45 and -PrC31 (forming CoVZC/PrC31 clade), and a pangolin-CoV_MP789 also contain related CSIs in the same positions. In contrast to the S1-NTD, both SARS and SARS-CoV-2r viruses contain two large CSIs in the S1-C-terminal domain (S1-CTD) that are absent in the CoVZC/PrC31 clade. One of these CSIs, consisting of a 12 aa insert, is also present in the RShSTT clade (Cambodia-CoV strains). Sequence similarity studies show that the S1-NTD of SARS-CoV-2r viruses is most similar to the CoVZC/PrC31 clade, whereas their S1-CTD exhibits highest similarity to the RShSTT- (and the SARS-related) CoVs. Results from the shared presence of CSIs and sequence similarity studies on different CoV lineages support the inference that the SARS-CoV-2r cluster of viruses has originated by a genetic recombination between the S1-NTD of the CoVZC/PrC31 clade of CoVs and the S1-CTD of RShSTT/SARS viruses, respectively. We also present compelling evidence, based on the shared presence of CSIs and sequence similarity studies, that the pangolin-CoV_MP789, whose receptor-binding domain is most similar to the SARS-CoV-2 virus, has resulted from another independent recombination event involving the S1-NTD of the CoVZC/PrC31 CoVs and the S1-CTD of an unidentified SARS-CoV-2r related virus. The SARS-CoV-2 virus involved in this latter recombination event is postulated to be most similar to the SARS-CoV-2. Several other CSIs reported here are specific for other clusters of sarbecoviruses including a clade consisting of bat-SARS-CoVs (BM48-31/BGR/2008 and SARS_BtKY72). Structural mapping studies show that the identified CSIs form distinct loops/patches on the surface of the spike protein. It is hypothesized that these novel loops/patches on the spike protein, through their interactions with other host components, should play important roles in the biology/pathology of SARS-CoV-2 virus. Lastly, the CSIs specific for different clades of sarbecoviruses including SARS-CoV-2r clade provide novel means for the identification of these viruses and other potential applications.

4.
Genes (Basel) ; 10(10)2019 09 24.
Article in English | MEDLINE | ID: mdl-31554175

ABSTRACT

The phylum Nematoda encompasses numerous free-living as well as parasitic members, including the widely used animal model Caenorhabditis elegans, with significant impact on human health, agriculture, and environment. In view of the importance of nematodes, it is of much interest to identify novel molecular characteristics that are distinctive features of this phylum, or specific taxonomic groups/clades within it, thereby providing innovative means for diagnostics as well as genetic and biochemical studies. Using genome sequences for 52 available nematodes, a robust phylogenetic tree was constructed based on concatenated sequences of 17 conserved proteins. The branching of species in this tree provides important insights into the evolutionary relationships among the studied nematode species. In parallel, detailed comparative analyses on protein sequences from nematodes (Caenorhabditis) species reported here have identified 52 novel molecular signatures (or synapomorphies) consisting of conserved signature indels (CSIs) in different proteins, which are uniquely shared by the homologs from either all genome-sequenced Caenorhabditis species or a number of higher taxonomic clades of nematodes encompassing this genus. Of these molecular signatures, 39 CSIs in proteins involved in diverse functions are uniquely present in all Caenorhabditis species providing reliable means for distinguishing this group of nematodes in molecular terms. The remainder of the CSIs are specific for a number of higher clades of nematodes and offer important insights into the evolutionary relationships among these species. The structural locations of some of the nematodes-specific CSIs were also mapped in the structural models of the corresponding proteins. All of the studied CSIs are localized within the surface-exposed loops of the proteins suggesting that they may potentially be involved in mediating novel protein-protein or protein-ligand interactions, which are specific for these groups of nematodes. The identified CSIs, due to their exclusivity for the indicated groups, provide reliable means for the identification of species within these nematodes groups in molecular terms. Further, due to the predicted roles of these CSIs in cellular functions, they provide important tools for genetic and biochemical studies in Caenorhabditis and other nematodes.


Subject(s)
Helminth Proteins/genetics , Nematoda/genetics , Animals , Conserved Sequence , Genomics , Helminth Proteins/chemistry , Models, Molecular , Phylogeny
5.
Genes (Basel) ; 10(4)2019 04 21.
Article in English | MEDLINE | ID: mdl-31010098

ABSTRACT

Members of the PIP4K/PIP5K family of proteins, which generate the highly important secondary messenger phosphatidylinositol-4,5-bisphosphate, play central roles in regulating diverse signaling pathways. In eukaryotic organisms, multiple isozymes and subfamilies of PIP4K/PIP5K proteins are found and it is of much interest to understand their evolution and species distribution and what unique molecular and biochemical characteristics distinguish specific isozymes and subfamilies of proteins. We report here the species distribution of different PIP4K/PIP5K family of proteins in eukaryotic organisms and phylogenetic analysis based on their protein sequences. Our results indicate that the distinct homologs of both PIP4K and PIP5K are found in different organisms belonging to the Holozoa clade of eukaryotes, which comprises of various metazoan phyla as well as their close unicellular relatives Choanoflagellates and Filasterea. In contrast, the deeper-branching eukaryotic lineages, as well as plants and fungi, contain only a single homolog of the PIP4K/PIP5K proteins. In parallel, our comparative analyses of PIP4K/PIP5K protein sequences have identified six highly-specific molecular markers consisting of conserved signature indels (CSIs) that are uniquely shared by either the PIP4K or PIP5K proteins, or both, or specific subfamilies of these proteins. Of these molecular markers, 2 CSIs are distinctive characteristics of all PIP4K homologs, 1 CSI distinguishes the PIP4K and PIP5K homologs from the Holozoa clade of species from the ancestral form of PIP4K/PIP5K found in deeper-branching eukaryotic lineages. The remaining three CSIs are specific for the PIP5Kα, PIP5Kß, and PIP4Kγ subfamilies of proteins from vertebrate species. These molecular markers provide important means for distinguishing different PIP4K/PIP5K isozymes as well as some of their subfamilies. In addition, the distribution patterns of these markers in different isozymes provide important insights into the evolutionary divergence of PIP4K/PIP5K proteins. Our results support the view that the Holozoa clade of eukaryotic organisms shared a common ancestor exclusive of the other eukaryotic lineages and that the initial gene duplication event leading to the divergence of distinct types of PIP4K and PIP5K homologs occurred in a common ancestor of this clade. Based on the results gleaned from different studies presented here, a model for the evolutionary divergence of the PIP4K/PIP5K family of proteins is presented.


Subject(s)
1-Phosphatidylinositol 4-Kinase/genetics , Eukaryota/enzymology , Eukaryota/genetics , Isoenzymes/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , 1-Phosphatidylinositol 4-Kinase/chemistry , Animals , Conserved Sequence , Eukaryota/metabolism , Evolution, Molecular , Isoenzymes/chemistry , Multigene Family , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phylogeny , Sequence Analysis, Protein , Structural Homology, Protein
6.
Microorganisms ; 8(1)2019 Dec 29.
Article in English | MEDLINE | ID: mdl-31905784

ABSTRACT

SecA is an evolutionarily conserved protein that plays an indispensable role in the secretion of proteins across the bacterial cell membrane. Comparative analyses of SecA homologs have identified two large conserved signature inserts (CSIs) that are unique characteristics of thermophilic bacteria. A 50 aa conserved insert in SecA is exclusively present in the SecA homologs from the orders Thermotogales and Aquificales, while a 76 aa insert in SecA is specific for the order Thermales and Hydrogenibacillus schlegelii. Phylogenetic analyses on SecA sequences show that the shared presence of these CSIs in unrelated groups of thermophiles is not due to lateral gene transfers, but instead these large CSIs have likely originated independently in these lineages due to their advantageous function. Both of these CSIs are located in SecA protein in a surface exposed region within the ATPase domain. To gain insights into the functional significance of the 50 aa CSI in SecA, molecular dynamics (MD) simulations were performed at two different temperatures using ADP-bound SecA from Thermotoga maritima. These analyses have identified a conserved network of water molecules near the 50 aa insert in which the Glu185 residue from the CSI is found to play a key role towards stabilizing these interactions. The results provide evidence for the possible role of the 50 aa CSI in stabilizing the binding interaction of ADP/ATP, which is required for SecA function. Additionally, the surface-exposed CSIs in SecA, due to their potential to make novel protein-protein interactions, could also contribute to the thermostability of SecA from thermophilic bacteria.

7.
Front Microbiol ; 8: 1409, 2017.
Article in English | MEDLINE | ID: mdl-28824557

ABSTRACT

Bifidobacteria comprises an important group/order of bacteria whose members have widespread usage in the food and health industry due to their health-promoting activity in the human gastrointestinal tract. However, little is known about the underlying molecular properties that are responsible for the probiotic effects of these bacteria. The enzyme ribonucleotide reductase (RNR) plays a key role in all organisms by reducing nucleoside di- or tri- phosphates into corresponding deoxyribose derivatives required for DNA synthesis, and RNR homologs belonging to classes I and III are present in either most or all Bifidobacteriales. Comparative analyses of these RNR homologs have identified several novel sequence features in the forms of conserved signature indels (CSIs) that are exclusively found in bifidobacterial RNRs. Specifically, in the large subunit of the aerobic class Ib RNR, three CSIs have been identified that are uniquely found in the Bifidobacteriales homologs. Similarly, the large subunit of the anaerobic class III RNR contains five CSIs that are also distinctive characteristics of bifidobacteria. Phylogenetic analyses indicate that these CSIs were introduced in a common ancestor of the Bifidobacteriales and retained by all descendants, likely due to their conferring advantageous functional roles. The identified CSIs in the bifidobacterial RNR homologs provide useful tools for further exploration of the novel functional aspects of these important enzymes that are exclusive to these bacteria. We also report here the results of homology modeling studies, which indicate that most of the bifidobacteria-specific CSIs are located within the surface loops of the RNRs, and of these, a large 43 amino acid insert in the class III RNR homolog forms an extension of the allosteric regulatory site known to be essential for protein function. Preliminary docking studies suggest that this large CSI may be playing a role in enhancing the stability of the RNR dimer complex. The possible significances of the identified CSIs, as well as the distribution of RNR homologs in the Bifidobacteriales, are discussed.

8.
Proteins ; 85(8): 1454-1467, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28407364

ABSTRACT

Homologs of the phosphatidylinositol-4-phosphate-5-kinase (PIP5K), which controls a multitude of essential cellular functions, contain a 8 aa insert in a conserved region that is specific for the Saccharomycetaceae family of fungi. Using structures of human PIP4K proteins as templates, structural models were generated of the Saccharomyces cerevisiae and human PIP5K proteins. In the modeled S. cerevisiae PIP5K, the 8 aa insert forms a surface exposed loop, present on the same face of the protein as the activation loop of the kinase domain. Electrostatic potential analysis indicates that the residues from 8 aa conserved loop form a highly positively charged surface patch, which through electrostatic interaction with the anionic portions of phospholipid head groups, is expected to play a role in the membrane interaction of the yeast PIP5K. To unravel this prediction, molecular dynamics (MD) simulations were carried out to examine the binding interaction of PIP5K, either containing or lacking the conserved signature insert, with two different membrane lipid bilayers. The results from MD studies provide insights concerning the mechanistic of interaction of PIP5K with lipid bilayer, and support the contention that the identified 8 aa conserved insert in fungal PIP5K plays an important role in the binding of this protein with membrane surface. Proteins 2017; 85:1454-1467. © 2017 Wiley Periodicals, Inc.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Molecular Dynamics Simulation , Phosphatidylcholines/chemistry , Phosphatidylinositol Phosphates/chemistry , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/chemistry , 1,2-Dipalmitoylphosphatidylcholine/metabolism , Amino Acid Sequence , Catalytic Domain , Conserved Sequence , Humans , Kinetics , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Mutagenesis, Insertional , Phosphatidylcholines/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phylogeny , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment , Static Electricity , Structural Homology, Protein , Substrate Specificity , Thermodynamics
9.
PLoS One ; 12(2): e0172176, 2017.
Article in English | MEDLINE | ID: mdl-28212383

ABSTRACT

Members from the order Bifidobacteriales, which include many species exhibiting health promoting effects, differ from all other organisms in using a unique pathway for carbohydrate metabolism, known as the "bifid shunt", which utilizes the enzyme phosphoketolase (PK) to carry out the phosphorolysis of both fructose-6-phosphate (F6P) and xylulose-5-phosphate (X5P). In contrast to bifidobacteria, the PKs found in other organisms (referred to XPK) are able to metabolize primarily X5P and show very little activity towards F6P. Presently, very little is known about the molecular or biochemical basis of the differences in the two forms of PKs. Comparative analyses of PK sequences from different organisms reported here have identified multiple high-specific sequence features in the forms of conserved signature inserts and deletions (CSIs) in the PK sequences that clearly distinguish the X5P/F6P phosphoketolases (XFPK) of bifidobacteria from the XPK homologs found in most other organisms. Interestingly, most of the molecular signatures that are specific for the XFPK from bifidobacteria are also shared by the PK homologs from the Coriobacteriales order of Actinobacteria. Similarly to the Bifidobacteriales, the order Coriobacteriales is also made up of commensal organisms, that are saccharolytic and able to metabolize wide variety of carbohydrates, producing lactate and other metabolites. Phylogenetic studies provide evidence that the XFPK from bifidobacteria are specifically related to those found in the Coriobacteriales and suggest that the gene for PK (XFPK) was horizontally transferred between these two groups. A number of the identified CSIs in the XFPK sequence, which serve to distinguish the XFPK homologs from XPK homologs, are located at the subunit interface in the structure of the XFPK dimer protein. The results of protein modelling and subunit docking studies indicate that these CSIs are involved in the formation/stabilization of the protein dimer. The significance of these observations regarding the differences in the activities of the XFPK and XPK homologs are discussed. Additionally, this work also discusses the significance of the XFPK-like homologs, similar to those found in bifidobacteria, in the order Coriobacteriales.


Subject(s)
Actinobacteria/enzymology , Aldehyde-Lyases/chemistry , Aldehyde-Lyases/metabolism , Evolution, Molecular , Phylogeny , Aldehyde-Lyases/genetics , Amino Acid Sequence , Gene Transfer, Horizontal , Protein Multimerization , Protein Structure, Quaternary , Sequence Homology, Amino Acid
10.
Photosynth Res ; 131(2): 159-171, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27638319

ABSTRACT

The evolution and diversification of different types of photosynthetic reaction centers (RCs) remains an important unresolved problem. We report here novel sequence features of the core proteins from Type I RCs (RC-I) and Type II RCs (RC-II) whose analyses provide important insights into the evolution of the RCs. The sequence alignments of the RC-I core proteins contain two conserved inserts or deletions (indels), a 3 amino acid (aa) indel that is uniquely found in all RC-I homologs from Cyanobacteria (both PsaA and PsaB) and a 1 aa indel that is specifically shared by the Chlorobi and Acidobacteria homologs. Ancestral sequence reconstruction provides evidence that the RC-I core protein from Heliobacteriaceae (PshA), lacking these indels, is most closely related to the ancestral RC-I protein. Thus, the identified 3 aa and 1 aa indels in the RC-I protein sequences must have been deletions, which occurred, respectively, in an ancestor of the modern Cyanobacteria containing a homodimeric form of RC-I and in a common ancestor of the RC-I core protein from Chlorobi and Acidobacteria. We also report a conserved 1 aa indel in the RC-II protein sequences that is commonly shared by all homologs from Cyanobacteria but not found in the homologs from Chloroflexi, Proteobacteria and Gemmatimonadetes. Ancestral sequence reconstruction provides evidence that the RC-II subunits lacking this indel are more similar to the ancestral RC-II protein. The results of flexible structural alignments of the indel-containing region of the RC-II protein with the homologous region in the RC-I core protein, which shares structural similarity with the RC-II homologs, support the view that the 1 aa indel present in the RC-II homologs from Cyanobacteria is a deletion, which was not present in the ancestral form of the RC-II protein. Our analyses of the conserved indels found in the RC-I and RC-II proteins, thus, support the view that the earliest photosynthetic lineages with living descendants likely contained only a single RC (RC-I or RC-II), and the presence of both RC-I and RC-II in a linked state, as found in the modern Cyanobacteria, is a derivation from these earlier phototrophs.


Subject(s)
INDEL Mutation , Photosynthesis , Photosynthetic Reaction Center Complex Proteins/genetics , Amino Acid Sequence , Phylogeny , Sequence Homology, Amino Acid
11.
Front Cell Dev Biol ; 4: 112, 2016.
Article in English | MEDLINE | ID: mdl-27803897

ABSTRACT

In mammals there are at least 10 isoforms of diacylglycerol kinases (DGK). All catalyze the phosphorylation of diacylglycerol (DAG) to phosphatidic acid (PA). Among DGK isoforms, DGKε has several unique features. It is the only DGK isoform with specificity for a particular species of DAG, i.e., 1-stearoyl-2-arachidonoyl glycerol. The smallest of all known DGK isoforms, DGKε, is also the only DGK devoid of a regulatory domain. DGKε is the only DGK isoform that has a hydrophobic segment that is predicted to form a transmembrane helix. As the only membrane-bound, constitutively active DGK isoform with exquisite specificity for particular molecular species of DAG, the functional overlap between DGKε and other DGKs is predicted to be minimal. DGKε exhibits specificity for DAG containing the same acyl chains as those found in the lipid intermediates of the phosphatidylinositol-cycle. It has also been shown that DGKε affects the acyl chain composition of phosphatidylinositol in whole cells. It is thus likely that DGKε is responsible for catalyzing one step in the phosphatidylinositol-cycle. Steps of this cycle take place in both the plasma membrane and the endoplasmic reticulum membrane. DGKε is likely present in both of these membranes. DGKε is the only DGK isoform that is associated with a human disease. Indeed, recessive loss-of-function mutations in DGKε cause atypical hemolytic-uremic syndrome (aHUS). This condition is characterized by thrombosis in the small vessels of the kidney. It causes acute renal insufficiency in infancy and most patients develop end-stage renal failure before adulthood. Disease pathophysiology is poorly understood and there is no therapy. There are also data suggesting that DGKε may play a role in epilepsy and Huntington disease. Thus, DGKε has many unique molecular and biochemical properties when compared to all other DGK isoforms. DGKε homologs also contain a number of conserved sequence features that are distinctive characteristics of either the rodents or specific groups of primate homologs. How cells, tissues and organisms harness DGKε's catalytic prowess remains unclear. The discovery of DGKε's role in causing aHUS will hopefully boost efforts to unravel the mechanisms by which DGKε dysfunction causes disease.

12.
Syst Appl Microbiol ; 39(7): 453-463, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27506333

ABSTRACT

The phylum "Deinococcus-Thermus" contains two heavily researched groups of extremophilic bacteria: the highly radioresistant order Deinococcales and the thermophilic order Thermales. Very few characteristics are known that are uniquely shared by members of the phylum "Deinococcus-Thermus". Comprehensive phylogenetic and comparative analyses of >65 "Deinococcus-Thermus" genomes reported here have identified numerous molecular signatures in the forms of conserved signature insertions/deletions (CSIs) and conserved signature proteins (CSPs), which provide distinguishing characteristics of the phylum "Deinococcus-Thermus" and its main groups. We have identified 58 unique CSIs and 155 unique CSPs that delineate different phylogenetic groups within the phylum. Of these identified traits, 24 CSIs and 29 CSPs are characteristic of the phylum "Deinococcus-Thermus" and they provide novel and reliable means to circumscribe/describe this phylum. An additional 3 CSIs and 3 CSPs are characteristic of the order Deinococcales, and 6 CSIs and 51 CSPs are characteristic of the order Thermales. The remaining 25 CSIs and 72 CSPs identified in this study are distinctive traits of genus level groups within the phylum "Deinococcus-Thermus". The molecular characteristics identified in this work provide novel and independent support for the common ancestry of the members of the phylum "Deinococcus-Thermus" and provide a new means to distinguish the main constituent clades of the phylum. Additionally, the CSIs and CSPs identified in this work may play a role in the unique extremophilic adaptations of the members of this phylum and further functional analyses of these characteristics could provide novel biochemical insights into the unique adaptations found within the phylum "Deinococcus-Thermus".


Subject(s)
Bacterial Proteins/genetics , Deinococcus/classification , Deinococcus/genetics , Genome, Bacterial/genetics , Radiation Tolerance/genetics , Thermotolerance/genetics , Thermus/classification , Thermus/genetics , Bacterial Typing Techniques , DNA, Bacterial/genetics , INDEL Mutation/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Valine-tRNA Ligase/ultrastructure
13.
Front Microbiol ; 7: 978, 2016.
Article in English | MEDLINE | ID: mdl-27446019

ABSTRACT

The order Bifidobacteriales comprises a diverse variety of species found in the gastrointestinal tract of humans and other animals, some of which are opportunistic pathogens, whereas a number of others exhibit health-promoting effects. However, currently very few biochemical or molecular characteristics are known which are specific for the order Bifidobacteriales, or specific clades within this order, which distinguish them from other bacteria. This study reports the results of detailed comparative genomic and phylogenetic studies on 62 genome-sequenced species/strains from the order Bifidobacteriales. In a robust phylogenetic tree for the Bifidobacteriales constructed based on 614 core proteins, a number of well-resolved clades were observed including a clade separating the Scarodvia-related genera (Scardovia clade) from the genera Bifidobacterium and Gardnerella, as well as a number of previously reported clusters of Bifidobacterium spp. In parallel, our comparative analyses of protein sequences from the Bifidobacteriales genomes have identified numerous molecular markers that are specific for this group of bacteria. Of these markers, 32 conserved signature indels (CSIs) in widely distributed proteins and 10 signature proteins are distinctive characteristics of all sequenced Bifidobacteriales species and provide novel and highly specific means for distinguishing these bacteria. In addition, multiple other molecular signatures are specific for the following clades of Bifidobacteriales: (i) 5 CSIs specific for a clade comprising of the Scardovia-related genera; (ii) 3 CSIs and 2 CSPs specific for a clade consisting of the Bifidobacterium and Gardnerella spp.; (iii) multiple other signatures demarcating a number of clusters of the B. asteroides-and B. longum- related species. The described molecular markers provide novel and reliable means for distinguishing the Bifidobacteriales and a number of their clades in molecular terms and for the classification of these bacteria. The Bifidobacteriales-specific CSIs, found in important proteins, are predicted to play important roles in modifying the cellular functions of the affected proteins. Hence, biochemical studies on the cellular functions of these CSIs could lead to discovery of novel characteristics of either all Bifidobacteriales, or specific groups of bacteria within this order. Some of the functions affected/modified by these genetic changes could also be important for the probiotic/pathogenic activities of the bifidobacteria.

14.
Photosynth Res ; 127(2): 201-18, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26174026

ABSTRACT

Homologs showing high degree of sequence similarity to the three subunits of the protochlorophyllide oxidoreductase enzyme complex (viz. BchL, BchN, and BchB), which carries out a central role in chlorophyll-bacteriochlorophyll (Bchl) biosynthesis, are uniquely found in photosynthetic organisms. The results of BLAST searches and homology modeling presented here show that proteins exhibiting a high degree of sequence and structural similarity to the BchB and BchN proteins are also present in organisms from the high G+C Gram-positive phylum of Actinobacteria, specifically in members of the genus Rubrobacter (R. x ylanophilus and R. r adiotolerans). The results presented exclude the possibility that the observed BLAST hits are for subunits of the nitrogenase complex or the chlorin reductase complex. The branching in phylogenetic trees and the sequence characteristics of the Rubrobacter BchB/BchN homologs indicate that these homologs are distinct from those found in other photosynthetic bacteria and that they may represent ancestral forms of the BchB/BchN proteins. Although a homolog showing high degree of sequence similarity to the BchL protein was not detected in Rubrobacter, another protein, belonging to the ParA/Soj/MinD family, present in these bacteria, exhibits high degree of structural similarity to the BchL. In addition to the BchB/BchN homologs, Rubrobacter species also contain homologs showing high degree of sequence similarity to different subunits of magnesium chelatase (BchD, BchH, and BchI) as well as proteins showing significant similarity to the BchP and BchG proteins. Interestingly, no homologs corresponding to the BchX, BchY, and BchZ proteins were detected in the Rubrobacter species. These results provide the first suggestive evidence that some form of photosynthesis either exists or was anciently present within the phylum Actinobacteria (high G+C Gram-positive) in members of the genus Rubrobacter. The significance of these results concerning the origin of the Bchl-based photosynthesis is also discussed.


Subject(s)
Actinobacteria/metabolism , Bacterial Proteins/metabolism , Biological Evolution , Chlorophyll/biosynthesis , Photosynthesis , Amino Acid Sequence , Bacterial Proteins/chemistry , Crystallography, X-Ray , Likelihood Functions , Models, Molecular , Molecular Sequence Data , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Phylogeny , Protein Subunits/metabolism , Reproducibility of Results , Sequence Alignment , Sequence Homology, Amino Acid , Structural Homology, Protein
15.
Int J Genomics ; 2015: 198560, 2015.
Article in English | MEDLINE | ID: mdl-25821780

ABSTRACT

The genera Actinobacillus, Haemophilus, and Pasteurella exhibit extensive polyphyletic branching in phylogenetic trees and do not represent coherent clusters of species. In this study, we have utilized molecular signatures identified through comparative genomic analyses in conjunction with genome based and multilocus sequence based phylogenetic analyses to clarify the phylogenetic and taxonomic boundary of these genera. We have identified large clusters of Actinobacillus, Haemophilus, and Pasteurella species which represent the "sensu stricto" members of these genera. We have identified 3, 7, and 6 conserved signature indels (CSIs), which are specifically shared by sensu stricto members of Actinobacillus, Haemophilus, and Pasteurella, respectively. We have also identified two different sets of CSIs that are unique characteristics of the pathogen containing genera Aggregatibacter and Mannheimia, respectively. It is now possible to demarcate the genera Actinobacillus sensu stricto, Haemophilus sensu stricto, and Pasteurella sensu stricto on the basis of discrete molecular signatures. The other members of the genera Actinobacillus, Haemophilus, and Pasteurella that do not fall within the "sensu stricto" clades and do not contain these molecular signatures should be reclassified as other genera. The CSIs identified here also provide useful diagnostic targets for the identification of current and novel members of the indicated genera.

16.
Interdiscip Sci ; 6(2): 108-17, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25172449

ABSTRACT

Cholera is a severe diarrheal disease caused by Vibrio cholerae and remains as a major health risk in developing countries. The emergence and spread of multi-drug resistant V. cholerae strains during the past two decades is now a major problem in the treatment of cholera and have created the urgent need for the development of novel therapeutic agents. Targeting transcriptional factor is now a novel approach to tackle the development of multi-drug resistant strain. In the recent year virtual high throughput screening has emerged as a widely accepted powerful technology in the identification of novel and diverse lead. This study provides new insight to the search for new potent and selective inhibitors that still remains necessary to avoid the risk of possible resistance and reduce toxicity and side effects of currently available cholera drugs. The publications of high resolution X-ray structure of V. cholerae ToxT has open the way to the structure based virtual screening to identify new small molecular inhibitors which still remain necessary to avoid the risk of possible resistance and reduce toxicity and side effects of currently available cholera drugs. In this study we have performed structure based virtual screening approach using NCI diversity set-II to look for novel inhibitor of ToxT and proposed eight candidate compounds with high scoring function. Thus from complex scoring and binding ability it is elucidated that these compounds could be the promising inhibitors or could be developed as novel lead compounds for drug design against cholera.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Cholera/microbiology , Drug Design , Drug Evaluation, Preclinical , Transcription Factors/antagonists & inhibitors , Vibrio cholerae/drug effects , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/chemistry , Cholera/drug therapy , Cholera Toxin , Crystallography, X-Ray , Drug Resistance, Multiple , Humans , Molecular Docking Simulation , Transcription Factors/chemistry , Transcriptional Activation/drug effects
17.
PLoS One ; 9(7): e102779, 2014.
Article in English | MEDLINE | ID: mdl-25062064

ABSTRACT

The human ATP-binding cassette family C member 6 (ABCC6) gene encodes an ABC transporter protein (ABCC6), primarily expressed in liver and kidney. Mutations in the ABCC6 gene cause pseudoxanthoma elasticum (PXE), an autosomal recessive connective tissue disease characterized by ectopic mineralization of the elastic fibers. The pathophysiology underlying PXE is incompletely understood, which can at least partly be explained by the undetermined nature of the ABCC6 substrates as well as the unknown substrate recognition and binding sites. Several compounds, including anionic glutathione conjugates (N-ethylmaleimide; NEM-GS) and leukotriene C4 (LTC4) were shown to be modestly transported in vitro; conversely, vitamin K3 (VK3) was demonstrated not to be transported by ABCC6. To predict the possible substrate binding pockets of the ABCC6 transporter, we generated a 3D homology model of ABCC6 in both open and closed conformation, qualified for molecular docking and virtual screening approaches. By docking 10 reported in vitro substrates in our ABCC6 3D homology models, we were able to predict the substrate binding residues of ABCC6. Further, virtual screening of 4651 metabolites from the Human Serum Metabolome Database against our open conformation model disclosed possible substrates for ABCC6, which are mostly lipid and biliary secretion compounds, some of which are found to be involved in mineralization. Docking of these possible substrates in the closed conformation model also showed high affinity. Virtual screening expands this possibility to explore more compounds that can interact with ABCC6, and may aid in understanding the mechanisms leading to PXE.


Subject(s)
Metabolome , Molecular Docking Simulation , Multidrug Resistance-Associated Proteins/chemistry , Pseudoxanthoma Elasticum/genetics , Binding Sites , Databases, Chemical , Humans , Molecular Conformation , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Protein Conformation , Pseudoxanthoma Elasticum/pathology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...