Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(25): 32298-32310, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38875471

ABSTRACT

The design and synthesis of novel heterostructured electrode materials are crucial to enable the fabrication of efficient supercapacitor devices. In this regard, transition metal phosphochalcogenides (S, Se) are promising candidates owing to their exotic electronic properties. Herein, a facile two-step hydrothermal protocol was used to synthesize binary and ternary metal phospho-selenide electrodes (Mn-Fe-P-Se, V-Fe-P-Se, Mn-V-P-Se, and Mn-Fe-V-P-Se). The chemical composition, morphology, and structure of the as-fabricated materials were fully investigated. The three-electrode electrochemical evaluation at 1.0 A g-1 demonstrated that the ternary metal electrode (MFVP-Se) exhibits a high capacity of 1968.63 C g-1. To assess the practical value of the rationally designed Mn-Fe-V-P-Se electrode material, Mn-Fe-V-P-Se was used as a positive electrode coupled with activated carbon (AC) as a negative electrode to assemble a hybrid supercapacitor device. This Mn-Fe-V-P-Se//AC device delivers a power density of 1999.96 W kg-1 with a high energy density of 149.88 Wh kg-1 coupled with no capacity loss after 5000 charging/discharging cycles. Additionally, density functional theory calculations revealed that our electrode exhibits suitable adsorption energy for OH- ions with a minimal diffusion barrier for ions.

2.
J Am Chem Soc ; 146(26): 17728-17737, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38899504

ABSTRACT

Targeted protein degradation technology holds great potential in biomedicine, particularly in treating tumors and other protein-related diseases. Research on intracellular protein degradation using molecular glues and PROTAC technology is leading, while research on the degradation of membrane proteins and extracellular proteins through the lysosomal pathway is still in the preclinical stage. The scarcity of useful targets is an immense limitation to technological advancement, making it essential to explore novel, potentially effective approaches for targeted lysosomal degradation. Here, we employed the glucose transporter Glut1 as an innovative lysosome-targeting receptor and devised the Glut1-Facilitated Lysosomal Degradation (GFLD) strategy. We synthesized potential Glut1 ligands via reversible addition-fragmentation chain transfer (RAFT) polymerization and acquired antibody-glycooligomer conjugates through bioorthogonal reactions as lysosome-targeting protein degradation molecules, utilized in the management of PD-L1 high-expressing triple-negative breast cancer. The glucose transporter Glut1 as a lysosome-targeting receptor exhibits potential for the advancement of a broader array of medications in the future.


Subject(s)
Glucose Transporter Type 1 , Lysosomes , Proteolysis , Lysosomes/metabolism , Glucose Transporter Type 1/metabolism , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Ligands
3.
Nanoscale Adv ; 6(13): 3355-3366, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38933851

ABSTRACT

Bacterial infections represent a major global health concern, causing millions of deaths and a significant economic burden. The development of antibacterial nanoporous surfaces with potential mechano-bactericidal effects can revolutionize infection control practices. In this study, a hybrid material of zeolitic imidazolate framework-8 (ZIF-8) doped with phosphomolybdic acid (PMA) was synthesized and characterized by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and N2 sorption isotherms. PMA@ZIF-8 performance as an antibacterial agent against E. coli was superior to that of its individual constituents, suggesting a synergistic effect of PMA and ZIF-8. The incorporation of PMA into ZIF-8 significantly enhanced its antibacterial efficacy, as evidenced by a twofold reduction in MIC (375 µg mL-1 vs. 750 µg mL-1) and a 4.35 times increase in the bactericidal kinetics rate constant. The time-kill curve experiment revealed that PMA@ZIF-8 achieved a 3-log reduction within 7 hours, whereas ZIF-8 required 24 hours to reach the same level of reduction. The density functional theory (DFT) calculated bandgap of PMA@ZIF-8 was significantly less than that of ZIF-8. Also, PMA@ZIF-8 has caused the elimination of 56.72% of the thiol group as detected by Ellman's assay. Accordingly, PMA@ZIF-8 can be both computationally and experimentally demonstrated as an oxidative nanozyme. PMA@ZIF-8's surface topology revealed nanorod protrusions, suggesting a potential mechano-bactericidal effect, which was confirmed by live/dead assay on PMA@ZIF-8-coated glass. This study highlights the potential of the PMA@ZIF-8 hybrid as a highly effective antibacterial agent, holding promise for creating multifunctional antibacterial surfaces.

4.
Sci Rep ; 13(1): 15636, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37731017

ABSTRACT

In this work, successful nanocomposites composed of different ratios of reduced graphene oxide and copper sulphide (xCuS-rGO) were fabricated to aid in treating water contaminated with organic dyes. XRD, TEM, SEM, XPS, IR, EDX and BET were applied for the characterization of (CuS-rGO). The photocatalytic strength of the prepared nanocomposites was evaluated using artificial sunlight irradiation. The nanocomposites were tested for their ability to degrade both anionic and cationic organic dyes, including amaranth and rhodamine B (RhB). The excellent photocatalytic strength of our composites, relative to pristine CuS and rGO, was interpreted as rGO sheets being very porous. In addition, the charge moved efficiently from rGO to CuS. The combined properties enhanced the efficiency of photodegradation of CuS-rGO composite across the dyes under the illumination of simulated sunlight. The electron transportation from rGO sheets to the CuS conduction band enhances the charge separation and transportation. The role of superoxide radicals in photocatalytic degradation was unveiled and the interactions between the studied dyes and our catalysts were investigated by density functional theory study and scavenging investigation. This work gives new ideas about the preparation and properties of (CuS-rGO) composites and their broad application in solving environmental problems.

5.
Chem Commun (Camb) ; 59(51): 7974-7977, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37282985

ABSTRACT

Understanding the fundamentals behind an electrocatalyst's selectivity enables the ability to steer product formation. Herein, we study Cu nanowires doped with a small amount of Al (12%) for CO2R, which enhances formate production by 16.9% over pure Cu nanowires. Density functional theory calculations and COR were employed to posit the preference of the formate formation pathway as a result of the Al doping.


Subject(s)
Carbon Dioxide , Nanowires , Formates , Alloys
6.
Sci Rep ; 12(1): 15989, 2022 09 26.
Article in English | MEDLINE | ID: mdl-36163449

ABSTRACT

Water microbial purification is one of the hottest topics that threats human morbidity and mortality. It is indispensable to purify water using antimicrobial agents combined with several technologies and systems. Herein, we introduce a class of nanosized metal organic framework; Zeolitic imidazolate framework (ZIF-67) cages encapsulated with polyoxometalates synthesized via facile one-step co-precipitation method. We employed two types of polyoxometalates bioactive agents; phosphotungstic acid (PTA) and phosphomolybdic acid (PMA) that act as novel antibacterial purification agents. Several characterization techniques were utilized to investigate the morphological, structural, chemical, and physical properties such as FESEM, EDS, FTIR, XRD, and N2 adsorption/desorption isotherms techniques. The antibacterial assessment was evaluated using colony forming unit (CFU) against both Escherichia coli and Staphylococcus aureus as models of Gram-negative and Gram-positive bacteria, respectively. The PTA@ZIF-67 showed higher microbial inhibition against both Gram-positive and Gram-negative bacteria by 98.8% and 84.6%, respectively. Furthermore, computational modeling using density functional theory was conducted to evaluate the antibacterial efficacy of PTA when compared to PMA. The computational and experimental findings demonstrate that the fabricated POM@ZIF-67 materials exhibited outstanding bactericidal effect against both Gram-negative and Gram-positive bacteria and effectively purify contaminated water.


Subject(s)
Anti-Infective Agents , Metal-Organic Frameworks , Anions , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Escherichia coli , Gram-Negative Bacteria , Gram-Positive Bacteria , Humans , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Phosphotungstic Acid/pharmacology , Polyelectrolytes , Water/chemistry
7.
Sci Rep ; 12(1): 13456, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35931804

ABSTRACT

The electrocatalytic reduction of carbon dioxide (CO2RR) into value-added fuels is a promising initiative to overcome the adverse effects of CO2 on climate change. Most electrocatalysts studied, however, overlook the harmful mining practices used to extract these catalysts in pursuit of achieving high-performance. Repurposing scrap metals to use as alternative electrocatalysts would thus hold high privilege even at the compromise of high performance. In this work, we demonstrated the repurposing of scrap brass alloys with different Zn content for the conversion of CO2 into carbon monoxide and formate. The scrap alloys were activated towards CO2RR via simple annealing in air and made more selective towards CO production through galvanic replacement with Ag. Upon galvanic replacement with Ag, the scrap brass-based electrocatalysts showed enhanced current density for CO production with better selectivity towards the formation of CO. The density functional theory (DFT) calculations were used to elucidate the potential mechanism and selectivity of the scrap brass catalysts towards CO2RR. The d-band center in the different brass samples with different Zn content was elucidated.

SELECTION OF CITATIONS
SEARCH DETAIL
...