Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
JACS Au ; 4(4): 1489-1499, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38665675

ABSTRACT

Zeolite-templated carbons (ZTCs) are a family of ordered microporous carbons with extralarge surface areas and micropore volumes, which are synthesized by carbon deposition within the confined spaces of zeolite micropores. There has been great controversy regarding the atomic structures of ZTCs, which encompass two extremes: (1) three-dimensionally connected curved open-blade-type carbon moieties and (2) ideal tubular structures (commonly referred to as "Schwarzites"). In this study, through a combination of experimental analyses and theoretical calculations, we demonstrate that the atomic structure of ZTCs is difficult to define as a single entity, and it widely varies depending on their synthesis conditions. Carbon deposition using a large organic precursor and low-temperature framework densification generates ZTCs predominantly composed of open-blade-type moieties, characterized by low surface curvature and abundant H-terminated edge sites. Meanwhile, synthesis using a small precursor with high-temperature densification produces ZTCs with an increased portion of closed-strut carbon moieties (or closed-fullerene-like nodes), exhibiting large surface curvature and diminished edge sites. The variations in the atomic structure of ZTCs result in significant differences in their macroscopic properties, such as N2/CO2 adsorption, oxidative stability, work function, and electrocatalytic properties, despite the presence of comparable pore structures. Therefore, ZTCs demonstrate the potential to synthesize ordered nanoporous carbons with tunable physicochemical properties.

2.
Acc Chem Res ; 56(21): 2887-2897, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37824727

ABSTRACT

ConspectusCarbon dioxide (CO2) capture and storage (CCS) is a means to enable the continued use of fossil fuels in the short term. In particular, postcombustion CO2 capture has attracted considerable attention because it can be retrofitted into existing power plants and industrial plants. Among various CO2 capture technologies, the absorption of CO2 using aqueous amines has been industrially employed for decades. However, such amine scrubbing technologies have inherent limitations of environmental and health concerns due to volatile amine loss, corrosion, and high energy demands for regeneration. To overcome these limitations, CO2 adsorption using solid adsorbents has emerged as a promising alternative due to its noncorrosiveness and low energy demand. Various amine-containing adsorbents have been synthesized and investigated for postcombustion CO2 capture. These materials are prepared by physically impregnating low-vapor-pressure amine polymers or by chemically grafting amines onto nanoporous materials. A wide variety of amine guests and nanoporous hosts (e.g., SiO2, Al2O3, zeolites, MOFs, and polymers) have been combined to develop advanced CO2 adsorbents.The design of CO2 adsorbents is a multifaceted puzzle that must ultimately consider integration with large-scale CO2 capture processes. Various engineering aspects need to be carefully considered. Unfortunately, a significant proportion of previous studies has primarily focused on the use of novel materials for improving the CO2 adsorption capacity. In this Account, we describe key challenges and solutions to develop energy-efficient and stable amine-containing adsorbents for postcombustion CO2 capture via temperature swing adsorption (TSA). We found that a high CO2 working capacity, often overemphasized in the literature, does not necessarily guarantee a low energy demand for CO2 capture. Suppressing coadsorption of H2O during the CO2 adsorption in humid flue gas is also a significant factor. Amine-containing adsorbents can be degraded through various pathways, including hydrothermal degradation of nanoporous hosts and chemical degradation of amine guests via urea formation and oxidation. To inhibit such degradation pathways, it is extremely important to properly design the nanoporous structures of the hosts and the molecular structures of the amine guests. By combining macroporous silica hosts, poly(ethylenimine) (PEI) functionalized with various alkyl epoxides, and phosphate-based oxidative stabilizers, we could synthesize adsorbents exhibiting low energy demands for CO2 capture and unprecedentedly high thermochemical stability under TSA conditions. The macroporous silica host synthesized by assembling fumed silica particles via spray-drying exhibited high hydrothermal stability and enabled uniform distribution of bulky amine polymers within its pores. The functionalization of PEI with alkyl epoxides converted its primary amines into hindered secondary amines, leading to a significant reduction in energy demand for TSA cycles and a remarkable improvement in long-term stabilities. The oxidative stability of amines could be drastically improved by adding phosphate metal-binding reagents, which can poison ppm-level metal impurities that catalyze amine oxidation. The present discussions will provide important insights into designing practical adsorbents for CO2 capture from engineering perspectives.

3.
Sci Adv ; 9(6): eade7871, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36763654

ABSTRACT

Two-dimensional (2D) carbon materials perforated with uniform micropores are considered ideal building blocks to fabricate advanced membranes for molecular separation and energy storage devices with high rate capabilities. However, creating high-density uniform micropores in 2D carbon using conventional perforation methods remains a formidable challenge. Here, we report a zeolite-templated bottom-up synthesis of ordered microporous 2D carbon. Through rational analysis of 255 zeolite structures, we find that the IWV zeolite having large 2D microporous channels and aluminosilicate compositions can serve as an ideal template for carbon replication. The resulting carbon is made of an extremely thin polyaromatic backbone and contains well-defined vertically aligned micropores (0.69 nm in diameter). Its areal pore density (0.70 nm-2) is considerably greater than that of porous graphene (<0.05 nm-2) prepared using top-down perforation methods. The isoporous membrane fabricated by assembling the exfoliated 2D carbon nanosheets exhibits outstanding permeance and molecular sieving properties in organic solvent nanofiltration.

4.
JACS Au ; 1(8): 1198-1207, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34467358

ABSTRACT

Metal-organic frameworks (MOFs) are a class of microporous materials that have been highlighted with fast and selective sorption of gas molecules; however, they are at least partially unstable in the scale-up process. Here, we report a rational shaping of MOFs in a scalable architecture of fiber sorbent. The long-standing stability challenge of MOFs was resolved by using stable metal oxide precursors that are subject to controlled surface oxide dissolution-growth chemistry during the Mg-based MOF synthesis. Highly uniform MOF crystals are synthesized along with the open-porous fiber sorbents networks, showing unprecedented cyclic CO2 capacities in both flue gas and direct air capture (DAC) conditions. The same chemistry enables an in situ flow synthesis of Mg-MOF fiber sorbents, providing a scalable pathway for MOF synthesis in an inert condition with minimal handling steps. This modular approach can serve both as a reaction stage for enhanced MOF fiber sorbent synthesis and as a "process-ready" separation device.

5.
J Hazard Mater ; 408: 124419, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33162239

ABSTRACT

Zeolites are widely used for capturing radioactive Cs+ and Sr2+, but the important structural factors determining their performance have not been clearly understood. To investigate the structure-property relationship, we prepared thirteen zeolites with various structures and Si/Al ratios. Ion-exchange experiments revealed that Cs+ exhibited an enhanced affinity to zeolites with high Si/Al ratios, which could be explained by the dielectric theory. Notably, zeolites containing 8-membered ring (8MR) showed extra-high Cs+ selectivity. Structural analysis using X-ray diffraction proved that Cs+ with an ionic diameter of 3.6 Å was selectively coordinated within 8MR having a cavity diameter of 3.6-4.1 Å. Such unique size-selective Cs+ coordination is analogous to ion complexation by macrocyclic organic ligands (e.g., crown ethers). Divalent Sr2+ showed decreasing affinity to zeolites as the Si/Al ratio increased, because of the increasing average Al-Al distance distribution. Sr2+ exchange exhibited an insignificant dependence on zeolite structures due to its strong hydration, which inhibited close interaction with zeolite frameworks. In terms of kinetics, Sr2+ exchange was significantly slower than Cs+ exchange because of the bulkiness of hydrated Sr2+ ions. Therefore, the micropore channels with large apertures (e.g., 12-membered ring) were beneficial for achieving fast ion-exchange kinetics, especially in the case of Sr2+.

6.
J Colloid Interface Sci ; 564: 113-123, 2020 Mar 22.
Article in English | MEDLINE | ID: mdl-31911217

ABSTRACT

HYPOTHESIS: Nacre-like polymer/clay nanocomposites are a fascinating material thanks to its superior mechanical property. However, it has been a great challenge to incorporate hydrophobic polymer components due to highly hydrophilic nature of clay, which limits further improvement of water-resistance and addition of various functionalities. To overcome this problem, we developed a method to form regular nacre-like layered structure from a hydrophobic polymer and hydrophilic clay by a combination of surface modification of clay and selective click reaction between the polymer and clay surfaces. EXPERIMENTS: Natural clay, montmorillonite, was modified with a hydrophobic surfactant bearing an ethenyl group and subsequently reacted in situ with a thiol-functionalized hydrophobic polysiloxane. The layered structure, as well as its formation process, mechanical property, physical stability in water, and self-adhesion property of the nanocomposites were investigated. FINDINGS: In situ thiol-ene click reaction between surface-modified clay and polymer led to self-alignment of clay platelets into a regular layered structure. The resultant nacre-like nanocomposites not only showed the good mechanical property but also had excellent stability in water and self-adhesion ability, both of which originated from the characteristics of the polymer used. These findings widen the possibility of functional nacre-like nanocomposites by expanding the range of applicable polymers to hydrophobic ones.

7.
ACS Appl Mater Interfaces ; 11(18): 16586-16593, 2019 May 08.
Article in English | MEDLINE | ID: mdl-30998318

ABSTRACT

Amine-containing solids are promising adsorbents for CO2 capture, but they suffer from irreversible poisoning by the highly acidic SO2 in flue gas. Here, we demonstrate a facile strategy to inhibit SO2 poisoning. We first prepared an amine-containing adsorbent by impregnating polyethyleneimine (PEI) into porous silica. The PEI located at the external surface of the adsorbent was selectively alkylated with epoxide so that amines were fully converted to tertiary amines. As opposed to that onto primary and secondary amines, SO2 adsorption onto tertiary amines is fully reversible. Therefore, during the flue gas adsorption, SO2 is reversibly captured by the tertiary-amine-rich layer and then desulfurized CO2 is adsorbed onto PEI beneath this layer. The resultant adsorbent showed insignificant loss of CO2 adsorption capacity (8.52%) even after 1000 CO2 adsorption-desorption cycles in the presence of 50 ppm SO2, whereas conventional PEI/silica showed severe capacity loss (65.1%) due to irreversible SO2 poisoning.

8.
Biotechnol Biofuels ; 11: 289, 2018.
Article in English | MEDLINE | ID: mdl-30386426

ABSTRACT

BACKGROUND: Mechanical refining is a low-capital and well-established technology used in pulp and paper industry to improve fiber bonding for product strength. Refining can also be applied in a biorefinery context to overcome the recalcitrance of pretreated biomass by opening up the biomass structure and modifying substrate properties (e.g., morphology, particle size, porosity, crystallinity), which increases enzyme accessibility to substrate and improves carbohydrate conversion. Although several characterization methods have been used to identify the changes in substrate properties, there is no systematic approach to evaluate the extent of fiber cell wall disruption and what physical properties can explain the improvement in enzymatic digestibility when pretreated lignocellulosic biomass is mechanically refined. This is because the fiber cell wall is complex across multiple scales, including the molecular scale, nano- and meso-scale (microfibril), and microscale (tissue level). A combination of advanced characterization tools is used in this study to better understand the effect of mechanical refining on the meso-scale microfibril assembly and the relationship between those meso-scale modifications and enzymatic hydrolysis. RESULTS: Enzymatic conversion of autohydrolysis sugarcane bagasse was improved from 69.6 to 77.2% (11% relative increase) after applying mechanical refining and an increase in enzymatic digestibility is observed with an increase in refining intensity. Based on a combination of advanced characterizations employed in this study, it was found that the refining action caused fiber size reduction, internal delamination, and increase in pores and swellability. CONCLUSIONS: A higher level of delamination and higher increase in porosity, analyzed by TEM and DSC, were clearly demonstrated, which explain the faster digestibility rate during the first 72 h of enzymatic hydrolysis for disc-refined samples when compared to the PFI-refined samples. In addition, an increased inter-fibrillar distance between cellulose microfibrils at the nano-meso-scale was also revealed by SFG analysis, while no evidence was found for a change in crystalline structure by XRD and solid-state NMR analysis.

9.
ACS Appl Mater Interfaces ; 10(28): 23825-23833, 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-29949337

ABSTRACT

Substantial efforts have been made to increase the CO2 working capacity of amine adsorbents for an efficient CO2 capture. However, the more important metric for assessing adsorbents is the regeneration heat required for capturing a fixed amount of CO2. In this work, we synthesized polyethyleneimine (PEI)/SiO2 adsorbents functionalized with various epoxides. This provided adsorbents with six different amine structures showing various CO2/H2O adsorption properties. Our studies revealed that the CO2 working capacity was not a decisive factor in determining the regeneration heat required for CO2 capture. This is because the benefit of large CO2 working capacity was canceled out by the difficulty of CO2 desorption. Instead, the suppression of H2O co-adsorption was critical for reducing the regeneration heat because substantial latent heat is required for H2O desorption. Consequently, the PEI/SiO2 functionalized with 1,2-epoxybutane required a much lower regeneration heat (2.66 GJ tCO2-1) than the conventional PEI/SiO2 (4.03 GJ tCO2-1) because of suppressed H2O co-adsorption as well as moderately high CO2 working capacity.

10.
Nat Commun ; 9(1): 726, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29463914

ABSTRACT

Amine-containing solids have been investigated as promising adsorbents for CO2 capture, but the low oxidative stability of amines has been the biggest hurdle for their practical applications. Here, we developed an extra-stable adsorbent by combining two strategies. First, poly(ethyleneimine) (PEI) was functionalized with 1,2-epoxybutane, which generates tethered 2-hydroxybutyl groups. Second, chelators were pre-supported onto a silica support to poison p.p.m.-level metal impurities (Fe and Cu) that catalyse amine oxidation. The combination of these strategies led to remarkable synergy, and the resultant adsorbent showed a minor loss of CO2 working capacity (8.5%) even after 30 days aging in O2-containing flue gas at 110 °C. This corresponds to a ~50 times slower deactivation rate than a conventional PEI/silica, which shows a complete loss of CO2 uptake capacity after the same treatment. The unprecedentedly high oxidative stability may represent an important breakthrough for the commercial implementation of these adsorbents.

11.
Biomacromolecules ; 18(9): 2959-2966, 2017 Sep 11.
Article in English | MEDLINE | ID: mdl-28853566

ABSTRACT

Man-made glues often fail to stick in wet environments because of hydration-induced softening and dissolution. The wound healing process of a tunicate inspired the synthesis of gallol-functionalized copolymers as underwater adhesive. Copolymers bearing three types of phenolic groups, namely, phenol, catechol, and gallol, were synthesized via the methoxymethyl protection/deprotection route. Surprisingly, the newly synthesized copolymers bearing gallol groups exhibited stronger adhesive performances (typically 7× stronger in water) than the widely used catechol-functionalized copolymers under all tested conditions (in air, water, seawater, or phosphate-buffered saline solution). The higher binding strength was ascribed to the tridentate-related interfacial interaction and chemical cross-linking. Moreover, gallol-functionalized copolymers adhered to all tested surfaces including plastic, glass, metal, and biological material. In seawater, the performance of gallol-functionalized copolymer even exceeds the commercially available isocyanate-based glue. The insights from this study are expected to help in the design of biomimetic materials containing gallol groups that may be utilized as potential bioadhesives and for other applications. The results from such a kind of comparable study among phenol, catechol, and gallol suggests that tridentate structure should be better than bidentate structure for bonding to the surface.


Subject(s)
Adhesives/chemical synthesis , Aquatic Organisms/chemistry , Catechols/chemistry , Gallic Acid/analogs & derivatives , Urochordata/chemistry , Adhesiveness , Adhesives/chemistry , Animals , Aquatic Organisms/metabolism , Cross-Linking Reagents/chemistry , Glass/chemistry , Metals/chemistry , Plastics/chemistry , Structure-Activity Relationship , Urochordata/metabolism
12.
Nat Commun ; 7: 12640, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27572662

ABSTRACT

Amine-containing adsorbents have been extensively investigated for post-combustion carbon dioxide capture due to their ability to chemisorb low-concentration carbon dioxide from a wet flue gas. However, earlier studies have focused primarily on the carbon dioxide uptake of adsorbents, and have not demonstrated effective adsorbent regeneration and long-term stability under such conditions. Here, we report the versatile and scalable synthesis of a functionalized-polyethyleneimine (PEI)/silica adsorbent which simultaneously exhibits a large working capacity (2.2 mmol g(-1)) and long-term stability in a practical temperature swing adsorption process (regeneration under 100% carbon dioxide at 120 °C), enabling the separation of concentrated carbon dioxide. We demonstrate that the functionalization of PEI with 1,2-epoxybutane reduces the heat of adsorption and facilitates carbon dioxide desorption (>99%) during regeneration compared with unmodified PEI (76%). Moreover, the functionalization significantly improves long-term adsorbent stability over repeated temperature swing adsorption cycles due to the suppression of urea formation and oxidative amine degradation.

SELECTION OF CITATIONS
SEARCH DETAIL