Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 709
Filter
1.
J Evid Based Med ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39350493

ABSTRACT

OBJECTIVE: To summarize the evidence on the efficacy and safety of vancomycin compared with those of alternative treatments in adult patients with methicillin-resistant Staphylococcus aureus (MRSA) infection. METHODS: PubMed, Embase, and Web of Science were searched up to December 15, 2023, for systematic reviews and meta-analyses comparing vancomycin with alternative MRSA treatments. Primary outcomes included clinical cure and microbiological eradication rates. Organ-specific safety outcomes were assessed. Summary estimates were recalculated using a random-effects model. Evidence was graded using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) tool. This study was registered in PROSPERO (CRD42022340359). RESULTS: This umbrella review included 19 studies and 71 meta-analyses (46 efficacy and 25 safety) comparing vancomycin with 10 alternative treatments across different MRSA infection types and populations. GRADE assessment showed that 29.58% of the meta-analyses were of high quality. Linezolid and daptomycin showed higher efficacy in MRSA-induced skin and soft tissue infections and pneumonia (moderate evidence quality) and bacteremia (very low evidence quality), respectively, compared with that of vancomycin. Cephalosporins had a higher risk of nausea, whereas linezolid had a higher risk of nausea, diarrhea, and thrombocytopenia than that of vancomycin. Vancomycin posed a higher risk of rash, pruritus, red man syndrome, and nephrotoxicity than that of alternatives. CONCLUSIONS: The quality of evidence supporting the higher efficacy of alternative treatment over vancomycin for MRSA infection was not high. Given varying safety profiles and advancements in therapeutic monitoring, careful consideration of patient-specific factors and pharmacokinetics is crucial when selecting treatment alternatives to vancomycin.

2.
RSC Adv ; 14(43): 31461-31466, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39372057

ABSTRACT

Smart weapon systems are being miniaturised for widespread application in high-energy materials, necessitating the development of processable and printable high explosive (HEs) composites that can be detonated with a small critical diameter. This study presents an efficient strategy for fabricating HE composites with exceptional detonation performance. We developed an HE ink based on 1,3,5-trinitro-1,3,5-triazinane (RDX), consisting of a glycidyl azide polymer (GAP) as a binder and a metal-organic framework (MOF) as an additive. This ink was deposited on an aluminium plate using direct ink writing (DIW). The resulting RDX/MOF composite demonstrated a significantly lower critical diameter (∼720 µm) for detonation compared to a composite without the MOF. This reduction in critical diameter is attributed to the pores inside the MOFs, which enhanced the transfer of heat during detonation, creating an artificial hot-spot that sustained continuous explosion. The fabricated RDX/MOF composite offers a promising approach for developing miniaturized smart weapon systems with improved detonation characteristics.

3.
Article in English | MEDLINE | ID: mdl-39257249

ABSTRACT

PURPOSE: This experiment aimed to observe the differences in biological properties by producing BGS-7 + PCL scaffolds with different weight fractions of BGS-7 through 3D printing and to confirm whether using the scaffold for vertical bone augmentation is effective. MATERIALS AND METHODS: Cube-shaped bioglass (BGS-7) and polycaprolactone (PCL) scaffolds with different weight fractions (PCL alone, PCL with 15% and 30% BGS-7) are produced using 3D printing. The surface hydroxyapatite (HA) apposition, the pH change, proliferation and attachment assays, and various gene expression levels are assessed. After a 7-mm implant was inserted 3 mm into the rabbit calvaria, vertical bone augmentation is performed around the implant and inside the scaffold in four ways: scaffold only, scaffold+bone graft, bone graft only, and no graft. Sacrifice is performed at 6, 12, and 24 weeks, and the various parameters are compared radiographically and histologically. RESULTS: HA apposition, cell proliferation, cell attachment, and expression of osteogenic genes increase as the proportion of BGS-7 increase. In the in vivo test, a higher bone-implant contact ratio, bone volume ratio, bone mineral density, and new bone area are observed when the scaffold and bone grafts were used together. CONCLUSION: The 3D-printed scaffold, a mixture of BGS-7 and PCL, exhibit higher biological compatibility as the proportion of BGS-7 increase. Additionally, the use of scaffold is effective for vertical bone augmentation.

4.
BMC Med Educ ; 24(1): 1013, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285377

ABSTRACT

BACKGROUND: ChatGPT, a recently developed artificial intelligence (AI) chatbot, has demonstrated improved performance in examinations in the medical field. However, thus far, an overall evaluation of the potential of ChatGPT models (ChatGPT-3.5 and GPT-4) in a variety of national health licensing examinations is lacking. This study aimed to provide a comprehensive assessment of the ChatGPT models' performance in national licensing examinations for medical, pharmacy, dentistry, and nursing research through a meta-analysis. METHODS: Following the PRISMA protocol, full-text articles from MEDLINE/PubMed, EMBASE, ERIC, Cochrane Library, Web of Science, and key journals were reviewed from the time of ChatGPT's introduction to February 27, 2024. Studies were eligible if they evaluated the performance of a ChatGPT model (ChatGPT-3.5 or GPT-4); related to national licensing examinations in the fields of medicine, pharmacy, dentistry, or nursing; involved multiple-choice questions; and provided data that enabled the calculation of effect size. Two reviewers independently completed data extraction, coding, and quality assessment. The JBI Critical Appraisal Tools were used to assess the quality of the selected articles. Overall effect size and 95% confidence intervals [CIs] were calculated using a random-effects model. RESULTS: A total of 23 studies were considered for this review, which evaluated the accuracy of four types of national licensing examinations. The selected articles were in the fields of medicine (n = 17), pharmacy (n = 3), nursing (n = 2), and dentistry (n = 1). They reported varying accuracy levels, ranging from 36 to 77% for ChatGPT-3.5 and 64.4-100% for GPT-4. The overall effect size for the percentage of accuracy was 70.1% (95% CI, 65-74.8%), which was statistically significant (p < 0.001). Subgroup analyses revealed that GPT-4 demonstrated significantly higher accuracy in providing correct responses than its earlier version, ChatGPT-3.5. Additionally, in the context of health licensing examinations, the ChatGPT models exhibited greater proficiency in the following order: pharmacy, medicine, dentistry, and nursing. However, the lack of a broader set of questions, including open-ended and scenario-based questions, and significant heterogeneity were limitations of this meta-analysis. CONCLUSIONS: This study sheds light on the accuracy of ChatGPT models in four national health licensing examinations across various countries and provides a practical basis and theoretical support for future research. Further studies are needed to explore their utilization in medical and health education by including a broader and more diverse range of questions, along with more advanced versions of AI chatbots.


Subject(s)
Artificial Intelligence , Educational Measurement , Licensure , Humans , Education, Nursing/standards , Educational Measurement/methods , Educational Measurement/standards , Licensure/standards , Education, Pharmacy/standards , Education, Medical/standards , Education, Dental/standards
5.
Trends Pharmacol Sci ; 45(10): 880-891, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39317621

ABSTRACT

Clinical trials are necessary for assessing the safety and efficacy of treatments. However, trial timelines are severely delayed with minimal success due to a multitude of factors, including imperfect trial site selection, cohort recruitment challenges, lack of efficacy, absence of reliable biomarkers, etc. Each of these factors possesses a unique computational challenge, such as data management, trial simulations, statistical analyses, and trial optimization. Recent advancements in quantum computing offer a promising opportunity to overcome these hurdles. In this opinion we uniquely explore the application of quantum optimization and quantum machine learning (QML) to the design and execution of clinical trials. We examine the current capabilities and limitations of quantum computing and outline its potential to streamline clinical trials.


Subject(s)
Clinical Trials as Topic , Machine Learning , Quantum Theory , Research Design , Humans , Clinical Trials as Topic/methods
6.
PLoS Pathog ; 20(9): e1012083, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39259751

ABSTRACT

The persistence of HIV-1 in long-lived latent reservoirs during suppressive antiretroviral therapy (ART) remains one of the principal barriers to a functional cure. Blocks to transcriptional elongation play a central role in maintaining the latent state, and several latency reversal strategies focus on the release of positive transcription elongation factor b (P-TEFb) from sequestration by negative regulatory complexes, such as the 7SK complex and BRD4. Another major cellular reservoir of P-TEFb is in Super Elongation Complexes (SECs), which play broad regulatory roles in host gene expression. Still, it is unknown if the release of P-TEFb from SECs is a viable latency reversal strategy. Here, we demonstrate that the SEC is not required for HIV-1 replication in primary CD4+ T cells and that a small molecular inhibitor of the P-TEFb/SEC interaction (termed KL-2) increases viral transcription. KL-2 acts synergistically with other latency reversing agents (LRAs) to reactivate viral transcription in several cell line models of latency in a manner that is, at least in part, dependent on the viral Tat protein. Finally, we demonstrate that KL-2 enhances viral reactivation in peripheral blood mononuclear cells (PBMCs) from people living with HIV (PLWH) on suppressive ART, most notably in combination with inhibitor of apoptosis protein antagonists (IAPi). Taken together, these results suggest that the release of P-TEFb from cellular SECs may be a novel route for HIV-1 latency reactivation.


Subject(s)
CD4-Positive T-Lymphocytes , HIV Infections , HIV-1 , Positive Transcriptional Elongation Factor B , Virus Latency , HIV-1/physiology , HIV-1/genetics , Humans , Virus Latency/physiology , Virus Latency/drug effects , Positive Transcriptional Elongation Factor B/metabolism , HIV Infections/virology , HIV Infections/metabolism , HIV Infections/drug therapy , CD4-Positive T-Lymphocytes/virology , CD4-Positive T-Lymphocytes/metabolism , Virus Activation/drug effects , Virus Replication , Gene Expression Regulation, Viral
7.
Circ Res ; 135(6): 685-700, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39105287

ABSTRACT

BACKGROUND: Monocytes are a critical innate immune system cell type that serves homeostatic and immunoregulatory functions. They have been identified historically by the cell surface expression of CD14 and CD16. However, recent single-cell studies have revealed that they are much more heterogeneous than previously realized. METHODS: We utilized cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell RNA sequencing to describe the comprehensive transcriptional and phenotypic landscape of 437 126 monocytes. RESULTS: This high-dimensional multimodal approach identified vast phenotypic diversity and functionally distinct subsets, including IFN-responsive, MHCIIhi (major histocompatibility complex class II), monocyte-platelet aggregates, as well as nonclassical, and several subpopulations of classical monocytes. Using flow cytometry, we validated the existence of MHCII+CD275+ MHCIIhi, CD42b+ monocyte-platelet aggregates, CD16+CD99- nonclassical monocytes, and CD99+ classical monocytes. Each subpopulation exhibited unique characteristics, developmental trajectories, transcriptional regulation, and tissue distribution. In addition, alterations associated with cardiovascular disease risk factors, including race, smoking, and hyperlipidemia were identified. Moreover, the effect of hyperlipidemia was recapitulated in mouse models of elevated cholesterol. CONCLUSIONS: This integrative and cross-species comparative analysis provides a new perspective on the comparison of alterations in monocytes in pathological conditions and offers insights into monocyte-driven mechanisms in cardiovascular disease and the potential for monocyte subpopulation targeted therapies.


Subject(s)
Cardiovascular Diseases , Monocytes , Single-Cell Analysis , Monocytes/metabolism , Monocytes/immunology , Animals , Single-Cell Analysis/methods , Cardiovascular Diseases/immunology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Humans , Mice , Male , Mice, Inbred C57BL , Female , Transcriptome , Heart Disease Risk Factors , Middle Aged , Gene Expression Profiling/methods
8.
J Anim Sci Technol ; 66(3): 577-586, 2024 May.
Article in English | MEDLINE | ID: mdl-38975582

ABSTRACT

The in vitro maturation (IVM) rate of canine oocytes remains low compared to other mammals due to their unique reproductive characteristics. This study aimed to explore the effect of hormone supplementation during the IVM of canine immature oocytes on nuclear maturation and subsequently assess its potential application in canine somatic cell nuclear transfer (SCNT). Immature oocytes were collected and cultured in an IVM medium supplemented with hormones (follicle-stimulating hormone [FSH] and progesterone [P4]) or without hormones (control) for 24 hours. The maturation rates of oocytes in the hormone-treated group (94.92 ± 3.15%) were significantly higher than those in the control group (61.01 ± 4.23%). Both in vitro and in vivo matured oocytes underwent NT to evaluate their utility, and the fusion rates were higher in the in vitro matured group than those in the vivo matured group, not significant between in vivo and in vitro matured group (73.28% and 82.35%, respectively). As a result, 14 fused embryos from the in vitro matured group were transferred into two surrogates, with one surrogate achieving a successful pregnancy and delivering four puppies. Whereas in the in vivo matured group, 85 fused embryos were transferred to 8 surrogate mothers, leading to three surrogates becoming pregnant and delivering one, four, and two puppies. The pregnancy rates were not significant between both groups (50% and 37.50%), but the number of offspring exhibited a significant difference (28.57% and 8.23%). In conclusion, we achieved a remarkable milestone by successfully producing cloned puppies using in vitro matured oocytes, underscoring the feasibility of canine cloning from in vitro recovered oocytes. It is important to note that this study focused only on immature oocytes after ovulation and only during the estrus stage. Further research targeting other stages of the estrous cycle could potentially enhance canine cloning efficiency.

9.
Breast Cancer ; 31(5): 869-885, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38861041

ABSTRACT

BACKGROUND: Breast cancer (BC) presents persistent challenges due to subtype-specific limited efficacy and potential resistance to standard therapy, influenced by the dynamic reversible nature of epigenetic plasticity. This study aims to comprehensively explore the evolving BC epigenetic landscape, analyzing trends and evaluating the therapeutic potential of epigenetic drugs (epi-drugs) for BC treatment. METHODS: We conducted a cross-sectional study of BC epigenetic trials using ClinicalTrials.gov until July 18, 2023. Additionally, results from randomized controlled trials were retrieved from the registry or PubMed using trial registration numbers. RESULTS: In total, 22 epi-drugs were investigated in 100 trials, with 11 currently being studied in 38 ongoing trials for BC. Over the years, epigenetic clinical trials for BC have notably increased, with histone deacetylase inhibitors constituting 45.45% of the candidate agents in the development pipeline. All ongoing trials are enrolling human epidermal growth factor receptor2 (HER2)-negative BC patients. Epi-drugs are commonly explored in combination with multiple anti-cancer therapies, such as aromatase or microtubule inhibitors, using an intermittent sequential administration approach. Emerging strategies include new-generation epi-drugs and combination involving immunotherapy or targeted therapy. Among candidate drugs, tucidinostat and entinostat, in combination with exemestane, demonstrated significant improvements in progression-free survival in phase III trials for hormone receptor-positive, HER2-negative BC patients. CONCLUSION: This study highlights the growing interest in BC epigenetics, suggesting a potential shift from a one-size-fits-all approach to precision medicine, and emphasizes the necessity for robust evidence on their efficacy and safety to support continuous development and approval, addressing the unmet needs in BC treatment.


Subject(s)
Breast Neoplasms , Epigenesis, Genetic , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Histone Deacetylase Inhibitors/therapeutic use , Cross-Sectional Studies , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Randomized Controlled Trials as Topic , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Clinical Trials as Topic , Benzamides , Pyridines
10.
J Healthc Leadersh ; 16: 213-225, 2024.
Article in English | MEDLINE | ID: mdl-38911350

ABSTRACT

Purpose: Leadership is increasingly becoming a priority in the forms of higher education associated with the Fourth Industrial Revolution; however, few studies have examined it in the context of pharmacy education. This study investigated the levels of communication competence, critical thinking disposition, problem-solving ability, and leadership of pharmacy students, and identified factors related to leadership. Methods: This study was conducted using a nationwide cross-sectional online survey with a self-administered questionnaire. A total of 416 third-to-sixth-year pharmacy students from all 35 pharmacy schools in South Korea, completed the survey from September 1 to 15, 2019. Data were analyzed using descriptive statistics, t-tests, Pearson's correlations, and multiple regression analysis. We verified construct validity by performing an exploratory factor analysis. Results: The pharmacy students revealed a moderate level of communication skills, critical thinking disposition, problem-solving ability, and leadership. Significant positive correlations were found among communication competence (r=0.724, p<0.001), critical thinking disposition (r=0.615, p<0.001), problem-solving ability (r=0.599, p<0.001), and leadership. After adjustment for control variables, communication competence (ß=0.319, p<0.001) was found to be the most significant predictor of leadership (F=104.12, p<0.001, R2=0.756). Conclusion: This study showed that the students' leadership was influenced by their competence in communicating effectively, thinking critically, and solving problems. Pharmacy educators should acknowledge and implement innovative curriculum and assessment approaches in preparing pharmacy students for their professional paths.

11.
Front Psychol ; 15: 1379391, 2024.
Article in English | MEDLINE | ID: mdl-38863671

ABSTRACT

The alteration of consciousness during shamanic rituals is both a physical and mystical phenomenon. It involves psychological and spiritual experiences. Through ritual practices, shamans can connect with archetype within the collective unconscious, utilizing trance-inducing techniques for "hallucinatory exploration". This study surveyed 75 participants to investigate the impact of prototype symbols in Shamanistic rituals on participants' consciousness states focusing on Jungian psychology's concept of archetype. The results indicate that archetype symbols in shamanic rituals can significantly influence participants' conscious state, leading them to experience a conscious dissolution of the self. Furthermore, archetype symbols have different effects at the stages of consciousness change. In particular, during the "Visionary Restructuralization" stage, archetype symbols, such as patterns, masks, totems and music, brought participants' consciousness to a peak and caused significant changes to it. These findings suggest that the metaphoric function of archetype symbols plays a crucial role in rituals. Archetype symbols connect the individual to the collective unconscious through visual images and symbolic imagery. They prompt the participants to experience emotional resonances that transcend individual experiences and affect their state of consciousness.

12.
Cell Rep ; 43(5): 114240, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38753486

ABSTRACT

Adipose tissue remodeling and dysfunction, characterized by elevated inflammation and insulin resistance, play a central role in obesity-related development of type 2 diabetes (T2D) and cardiovascular diseases. Long intergenic non-coding RNAs (lincRNAs) are important regulators of cellular functions. Here, we describe the functions of linc-ADAIN (adipose anti-inflammatory), an adipose lincRNA that is downregulated in white adipose tissue of obese humans. We demonstrate that linc-ADAIN knockdown (KD) increases KLF5 and interleukin-8 (IL-8) mRNA stability and translation by interacting with IGF2BP2. Upregulation of KLF5 and IL-8, via linc-ADAIN KD, leads to an enhanced adipogenic program and adipose tissue inflammation, mirroring the obese state, in vitro and in vivo. KD of linc-ADAIN in human adipose stromal cell (ASC) hTERT adipocytes implanted into mice increases adipocyte size and macrophage infiltration compared to implanted control adipocytes, mimicking hallmark features of obesity-induced adipose tissue remodeling. linc-ADAIN is an anti-inflammatory lincRNA that limits adipose tissue expansion and lipid storage.


Subject(s)
Adipogenesis , Interleukin-8 , Kruppel-Like Transcription Factors , RNA Stability , RNA, Long Noncoding , Animals , Humans , Mice , Adipocytes/metabolism , Adipogenesis/genetics , Adipose Tissue/metabolism , Inflammation/pathology , Inflammation/genetics , Inflammation/metabolism , Interleukin-8/metabolism , Interleukin-8/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Obesity/metabolism , Obesity/genetics , Obesity/pathology , RNA Stability/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
14.
Mol Ther Nucleic Acids ; 35(2): 102186, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38706632

ABSTRACT

Recent studies have highlighted the effectiveness of using antisense oligonucleotides (ASOs) for cellular RNA regulation, including targets that are considered undruggable; however, manually designing optimal ASO sequences can be labor intensive and time consuming, which potentially limits their broader application. To address this challenge, we introduce a platform, the ASOptimizer, a deep-learning-based framework that efficiently designs ASOs at a low cost. This platform not only selects the most efficient mRNA target sites but also optimizes the chemical modifications for enhanced performance. Indoleamine 2,3-dioxygenase 1 (IDO1) promotes cancer survival by depleting tryptophan and producing kynurenine, leading to immunosuppression through the aryl-hydrocarbon receptor (Ahr) pathway within the tumor microenvironment. We used ASOptimizer to identify ASOs that target IDO1 mRNA as potential cancer therapeutics. Our methodology consists of two stages: sequence engineering and chemical engineering. During the sequence-engineering stage, we optimized and predicted ASO sequences that could target IDO1 mRNA efficiently. In the chemical-engineering stage, we further refined these ASOs to enhance their inhibitory activity while reducing their potential cytotoxicity. In conclusion, our research demonstrates the potential of ASOptimizer for identifying ASOs with improved efficacy and safety.

15.
Antibiotics (Basel) ; 13(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38667048

ABSTRACT

Gentamicin, an aminoglycoside antibiotic, is a mixture of therapeutically active C1, C1a, C2 and other minor components. Despite its decades-long use in pigs and other species, its intramuscular (IM) pharmacokinetics/pharmacodynamics (PKs/PDs) are unknown in piglets. Furthermore, the PKs of many drugs differ between healthy and sick animals. Therefore, we investigated the PKs of gentamicin after a single IM dose (10 mg/kg) in healthy piglets and piglets that were intranasally co-infected with Actinobacillus pleuropneumoniae and Pasteurella multocida (PM). The plasma concentrations were measured using validated liquid chromatography/mass spectrometry. The gentamicin exposure was 36% lower based on the area under the plasma concentration-time curve and 16% lower based on the maximum plasma concentration (Cmax) in the infected piglets compared to the healthy piglets, while it was eliminated faster (shorter half-life and larger clearance) in the infected piglets compared to the healthy piglets. The clearance and volume of distribution were the highest for the C1 component. C1, C1a and C2 accounted for 22-25%, 33-37% and 40-42% of the total gentamicin exposure, respectively. The PK/PD target for the efficacy of aminoglycosides (Cmax/minimum inhibitory concentration (MIC) > 10) could be exceeded for PM, with a greater magnitude in the healthy piglets. We suggest integrating this PK information with antibiotic susceptibility data for other bacteria to make informed antibiotic and dosage regimen selections against piglet infections.

16.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612641

ABSTRACT

Long COVID (LongC) is associated with a myriad of symptoms including cognitive impairment. We reported at the beginning of the COVID-19 pandemic that neuronal-enriched or L1CAM+ extracellular vesicles (nEVs) from people with LongC contained proteins associated with Alzheimer's disease (AD). Since that time, a subset of people with prior COVID infection continue to report neurological problems more than three months after infection. Blood markers to better characterize LongC are elusive. To further identify neuronal proteins associated with LongC, we maximized the number of nEVs isolated from plasma by developing a hybrid EV Microfluidic Affinity Purification (EV-MAP) technique. We isolated nEVs from people with LongC and neurological complaints, AD, and HIV infection with mild cognitive impairment. Using the OLINK platform that assesses 384 neurological proteins, we identified 11 significant proteins increased in LongC and 2 decreased (BST1, GGT1). Fourteen proteins were increased in AD and forty proteins associated with HIV cognitive impairment were elevated with one decreased (IVD). One common protein (BST1) was decreased in LongC and increased in HIV. Six proteins (MIF, ENO1, MESD, NUDT5, TNFSF14 and FYB1) were expressed in both LongC and AD and no proteins were common to HIV and AD. This study begins to identify differences and similarities in the neuronal response to LongC versus AD and HIV infection.


Subject(s)
Alzheimer Disease , COVID-19 , Extracellular Vesicles , HIV Infections , Humans , Post-Acute COVID-19 Syndrome , Microfluidics , Pandemics
17.
Ecotoxicol Environ Saf ; 275: 116262, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38569320

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a key ligand-dependent transcription factor that mediates the toxic effects of compounds such as dioxin. Recently, natural ligands of AHR, including flavonoids, have been attracting physiological and toxicological attention as they have been reported to regulate major biological functions such as inflammation and anti-cancer by reducing the toxic effects of dioxin. Additionally, it is known that natural AHR ligands can accumulate in wildlife tissues, such as fish. However, studies in fish have investigated only a few ligands in experimental fish species, and the AHR response of marine fish to natural AHR ligands of various other structures has not been thoroughly investigated. To explore various natural AHR ligands in marine fish, which make up the most fish, it is necessary to develop new screening methods that consider the specificity of marine fish. In this study, we investigated the response of natural ligands by constructing in vitro and in silico experimental systems using red seabream as a model species. We attempted to develop a new predictive model to screen potential ligands that can induce transcriptional activation of red seabream AHR1 and AHR2 (rsAHR1 and rsAHR2). This was achieved through multiple analyses using in silico/ in vitro data and Tox21 big data. First, we constructed an in vitro reporter gene assay of rsAHR1 and rsAHR2 and measured the response of 10 representatives natural AHR ligands in COS-7 cells. The results showed that FICZ, Genistein, Daidzein, I3C, DIM, Quercetin and Baicalin induced the transcriptional activity of rsAHR1 and rsAHR2, while Resveratrol and Retinol did not induce the transcriptional activity of rsAHR isoforms. Comparing the EC50 values of the respective compounds in rsAHR1 and rsAHR2, FICZ, Genistein, and Daidzein exhibited similar isoform responses, but I3C, Baicalin, DIM and Quercetin show the isoform-specific responses. These results suggest that natural AHR ligands have specific profiling and transcriptional activity for each rsAHR isoform. In silico analysis, we constructed homology models of the ligand binding domains (LBDs) of rsAHR1 and rsAHR2 and calculated the docking energies (U_dock values) of natural ligands with measured in vitro transcriptional activity and dioxins reported in previous studies. The results showed a significant correlation (R2=0.74(rsAHR1), R2=0.83(rsAHR2)) between docking energy and transcriptional activity (EC50) value, suggesting that the homology model of rsAHR1 and rsAHR2 can be utilized to predict the potential transactivation of ligands. To broaden the applicability of the homology model to diverse compound structures and validate the correlation with transcriptional activity, we conducted additional analyses utilizing Tox21 big data. We calculated the docking energy values for 1860 chemicals in both rsAHR1 and rsAHR2, which were tested for transcriptional activation in Tox21 data against human AHR. By comparing the U_dock energy values between 775 active compounds and 1085 inactive compounds, a significant difference (p<0.001) was observed between the U_dock energy values in the two groups, suggesting that the U_dock value can be applied to distinguish the activation of compounds. Furthermore, we observed a significant correlation (R2=0.45) between the AC50 of Tox21 database and U_dock values of human AHR model. In conclusion, we calculated equations to translate the results of an in silico prediction model for ligand screening of rsAHR1 and rsAHR2 transactivation. This ligand screening model can be a powerful tool to quantitatively estimate AHR transactivation of major marine agents to which red seabream may be exposed. The study introduces a new screening approach for potential natural AHR ligands in marine fish, based on homology model-docking energy values of rsAHR1 and rsAHR2, with implications for future agonist development and applications bridging in silico and in vitro data.


Subject(s)
Dioxins , Polychlorinated Dibenzodioxins , Sea Bream , Animals , Humans , Sea Bream/genetics , Sea Bream/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Dioxins/metabolism , Ligands , Quercetin , Genistein/toxicity , Genistein/metabolism , Polychlorinated Dibenzodioxins/metabolism , Protein Isoforms/genetics
19.
Exp Mol Med ; 56(4): 1013-1026, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38684915

ABSTRACT

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent because it kills cancer cells while sparing normal cells. However, many cancers, including pancreatic ductal adenocarcinoma (PDAC), exhibit intrinsic or acquired resistance to TRAIL, and the molecular mechanisms underlying TRAIL resistance in cancers, particularly in PDAC, remain unclear. In this study, we demonstrated that glutamine (Gln) endows PDAC cells with resistance to TRAIL through KDM4C-mediated epigenetic regulation of cFLIP. Inhibition of glutaminolysis significantly reduced the cFLIP level, leading to TRAIL-mediated formation of death-inducing signaling complexes. Overexpression of cFLIP dramatically rescued PDAC cells from TRAIL/Gln deprivation-induced apoptosis. Alpha-Ketoglutarate (aKG) supplementation significantly reversed the decrease in the cFLIP level induced by glutaminolysis inhibition and rescued PDAC cells from TRAIL/Gln deprivation-induced apoptosis. Knockdown of glutamic-oxaloacetic transaminase 2, which facilitates the conversion of oxaloacetate and glutamate into aspartate and aKG, decreased aKG production and the cFLIP level and activated TRAIL-induced apoptosis. AKG-mediated epigenetic regulation was necessary for maintaining a high level of cFLIP. Glutaminolysis inhibition increased the abundance of H3K9me3 in the cFLIP promoter, indicating that Gln-derived aKG production is important for Jumonji-domain histone demethylase (JHDM)-mediated cFLIP regulation. The JHDM KDM4C regulated cFLIP expression by binding to its promoter, and KDM4C knockdown sensitized PDAC cells to TRAIL-induced apoptosis. The present findings suggest that Gln-derived aKG production is required for KDM4C-mediated epigenetic regulation of cFLIP, which leads to resistance to TRAIL.


Subject(s)
Apoptosis , CASP8 and FADD-Like Apoptosis Regulating Protein , Drug Resistance, Neoplasm , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Glutamine , Jumonji Domain-Containing Histone Demethylases , Pancreatic Neoplasms , TNF-Related Apoptosis-Inducing Ligand , Humans , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , Glutamine/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Drug Resistance, Neoplasm/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Apoptosis/drug effects , Ketoglutaric Acids/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Aspartate Aminotransferase, Cytoplasmic/metabolism , Aspartate Aminotransferase, Cytoplasmic/genetics , Animals , Promoter Regions, Genetic
20.
bioRxiv ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38464055

ABSTRACT

The persistence of HIV-1 in long-lived latent reservoirs during suppressive antiretroviral therapy (ART) remains one of the principal barriers to a functional cure. Blocks to transcriptional elongation play a central role in maintaining the latent state, and several latency reversal strategies focus on the release of positive transcription elongation factor b (P-TEFb) from sequestration by negative regulatory complexes, such as the 7SK complex and BRD4. Another major cellular reservoir of P-TEFb is in Super Elongation Complexes (SECs), which play broad regulatory roles in host gene expression. Still, it is unknown if the release of P-TEFb from SECs is a viable latency reversal strategy. Here, we demonstrate that the SEC is not required for HIV-1 replication in primary CD4+ T cells and that a small molecular inhibitor of the P-TEFb/SEC interaction (termed KL-2) increases viral transcription. KL-2 acts synergistically with other latency reversing agents (LRAs) to reactivate viral transcription in several cell line models of latency in a manner that is, at least in part, dependent on the viral Tat protein. Finally, we demonstrate that KL-2 enhances viral reactivation in peripheral blood mononuclear cells (PBMCs) from people living with HIV on suppressive ART, most notably in combination with inhibitor of apoptosis protein antagonists (IAPi). Taken together, these results suggest that the release of P-TEFb from cellular SECs may be a novel route for HIV-1 latency reactivation.

SELECTION OF CITATIONS
SEARCH DETAIL