Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209079

ABSTRACT

Although hepatitis B virus (HBV) integration into the cellular genome is well known in HCC (hepatocellular carcinoma) patients, its biological role still remains uncertain. This study investigated the patterns of HBV integration and correlated them with TERT (telomerase reverse transcriptase) alterations in paired tumor and non-tumor tissues. Compared to those in non-tumors, tumoral integrations occurred less frequently but with higher read counts and were more preferentially observed in genic regions with significant enrichment of integration into promoters. In HBV-related tumors, TERT promoter was identified as the most frequent site (38.5% (10/26)) of HBV integration. TERT promoter mutation was observed only in tumors (24.2% (8/33)), but not in non-tumors. Only 3.00% (34/1133) of HBV integration sites were shared between tumors and non-tumors. Within the HBV genome, HBV breakpoints were distributed preferentially in the 3' end of HBx, with more tumoral integrations detected in the preS/S region. The major genes that were recurrently affected by HBV integration included TERT and MLL4 for tumors and FN1 for non-tumors. Functional enrichment analysis of tumoral genes with integrations showed enrichment of cancer-associated genes. The patterns and functions of HBV integration are distinct between tumors and non-tumors. Tumoral integration is often enriched into both human-virus regions with oncogenic regulatory function. The characteristic genomic features of HBV integration together with TERT alteration may dysregulate the affected gene function, thereby contributing to hepatocarcinogenesis.


Subject(s)
Carcinoma, Hepatocellular/virology , Hepatitis B virus/physiology , Hepatitis B/genetics , Liver Neoplasms/virology , Mutation , Telomerase/genetics , Adult , Aged , Carcinoma, Hepatocellular/genetics , Case-Control Studies , DNA, Viral/genetics , Female , Fibronectins/genetics , Hepatitis B/complications , Histone-Lysine N-Methyltransferase/genetics , Humans , Liver Neoplasms/genetics , Male , Middle Aged , Promoter Regions, Genetic , Trans-Activators/genetics , Viral Regulatory and Accessory Proteins/genetics , Virus Integration
2.
Cancers (Basel) ; 13(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946181

ABSTRACT

Telomerase reverse transcriptase (TERT) mutations are reportedly the most frequent somatic genetic alterations in hepatocellular carcinoma (HCC). An integrative analysis of TERT-telomere signaling during hepatocarcinogenesis is lacking. This study aimed to investigate the clinicopathological association and prognostic value of TERT gene alterations and telomere length in HCC patients undergoing hepatectomy as well as transarterial chemotherapy (TACE). TERT promoter mutation, expression, and telomere length were analyzed by Sanger sequencing and real-time PCR in 305 tissue samples. Protein-protein interaction (PPI) analysis was performed to identify a set of genes that physically interact with TERT. The PPI analysis identified eight key TERT-interacting genes, namely CCT5, TUBA1B, mTOR, RPS6KB1, AKT1, WHAZ, YWHAQ, and TERT. Among these, TERT was the most strongly differentially expressed gene. TERT promoter mutations were more frequent, TERT expression was significantly higher, and telomere length was longer in tumors versus non-tumors. TERT promoter mutations were most frequent in HCV-related HCCs and less frequent in HBV-related HCCs. TERT promoter mutations were associated with higher TERT levels and longer telomere length and were an independent predictor of worse overall survival after hepatectomy. TERT expression was positively correlated with tumor differentiation and stage progression, and independently predicted shorter time to progression after TACE. The TERT-telomere network may have a crucial role in the development and progression of HCC. TERT-telomere abnormalities might serve as useful biomarkers for HCC, but the prognostic values may differ with tumor characteristics and treatment.

3.
Nutr Res Pract ; 11(6): 470-478, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29209457

ABSTRACT

BACKGROUND/OBJECTIVE: Orostachys japonicus A. Berger (Crassulaceae) has been used in traditional herbal medicines in Korea and other Asian countries to treat various diseases, including liver disorders. In the present study, the anti-fibrotic effects of O. japonicus extract (OJE) in cellular and experimental hepatofibrotic rat models were investigated. MATERIALS/METHODS: An in vitro hepatic stellate cells (HSCs) system was used to estimate cell viability, cell cycle and apoptosis by MTT assay, flow cytometry, and Annexin V-FITC/PI staining techniques, respectively. In addition, thioacetamide (TAA)-induced liver fibrosis was established in Sprague Dawley rats. Briefly, animals were divided into five groups (n = 8): Control, TAA, OJE 10 (TAA with OJE 10 mg/kg), OJE 100 (TAA with OJE 100 mg/kg) and silymarin (TAA with Silymarin 50 mg/kg). Fibrosis was induced by treatment with TAA (200 mg/kg, i.p.) twice per week for 13 weeks, while OJE and silymarin were administered orally two times per week from week 7 to 13. The fibrotic related gene expression serum biomarkers glutathione and hydroxyproline were estimated by RT-PCR and spectrophotometry, respectively, using commercial kits. RESULTS: OJE (0.5 and 0.1 mg/mL) and silymarin (0.05 mg/mL) treatment significantly (P < 0.01 and P < 0.001) induced apoptosis (16.95% and 27.48% for OJE and 25.87% for silymarin, respectively) in HSC-T6 cells when compared with the control group (9.09%). Further, rat primary HSCs showed changes in morphology in response to OJE 0.1 mg/mL treatment. In in vivo studies, OJE (10 and 100 mg/kg) treatment significantly ameliorated TAA-induced alterations in levels of serum biomarkers, fibrotic related gene expression, glutathione, and hydroxyproline (P < 0.05-P < 0.001) and rescued the histopathological changes. CONCLUSIONS: OJE can be developed as a potential agent for the treatment of hepatofibrosis.

4.
Mol Med Rep ; 13(1): 1019-25, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26648020

ABSTRACT

Rhus javanica Linn, a traditional medicinal herb from the family Anacardiaceae, has been used in the treatment of liver diseases, cancer, parasitic infections, malaria and respiratory diseases in China, Korea and other Asian countries for centuries. In the present study, the protective effects of R. javanica ethanolic extract (RJE) on hydrogen peroxide (H2O2)-induced oxidative stress in human Chang liver cells was investigated. The cell cytotoxicity and viability were assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The activities of superoxide dismutase (SOD) and catalase (CAT) were measured using respective enzymatic kits. Cell cycle analysis was performed using flow cytometric analysis. The protein expression levels of p53, B-cell lymphoma (Bcl)-2, Bcl-2-associated X protein (Bax) and caspase-3 were assessed by western blotting. Human Chang liver cells were treated with different concentrations (0.1, 0.3 or 0.5 mg/ml) of RJE, and were subsequently exposed to H2O2 (30 µM). Treatment with H2O2 (30 µM) significantly induced cytotoxicity (P<0.05) and reduced the viability of the Chang liver cells. However, pretreatment of the cells with RJE (0.1, 0.3 or 0.5 mg/ml) significantly increased the cell viability (P<0.001 at 0.5 mg/ml) in a concentration-dependent manner following H2O2 treatment. Furthermore, pretreatment with RJE increased the enzyme activities of SOD and CAT, and decreased the sub-G1 growth phase of the cell cycle in response to H2O2-induced oxidative stress (P<0.001 at 0.3 and 0.5 mg/ml H2O2). RJE also regulated the protein expression levels of p53, Bax, caspase-3 and Bcl-2. These results suggested that RJE may protect human Chang liver cells against oxidative damage by increasing the levels of antioxidant enzymes and regulating antiapoptotic oxidative stress mechanisms, thereby providing insights into the mechanism which underpins the traditional claims made for RJE in the treatment of liver diseases.


Subject(s)
Apoptosis/drug effects , Liver/drug effects , Oxidative Stress/genetics , Plant Extracts/administration & dosage , Caspase 3/biosynthesis , Catalase/biosynthesis , Gene Expression Regulation/drug effects , Humans , Hydrogen Peroxide/toxicity , Liver/metabolism , Oxidative Stress/drug effects , Plant Extracts/chemistry , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Rhus/chemistry , Signal Transduction/drug effects , Superoxide Dismutase/biosynthesis , Tumor Suppressor Protein p53/biosynthesis , bcl-2-Associated X Protein/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL