Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Food Sci Biotechnol ; 32(13): 1841-1850, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37781060

ABSTRACT

Coconut haustorium (CH) is formed inside coconut shell during coconut germination. This study aimed to investigate the compositions and contents of CH phytochemicals. Phytochemical compositions and contents in CH were analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and spectrophotometrical method. Five phenolic acids and four flavonoids were identified in CH. Ferulic acid and myricetin were the most abundant among phenolic acids and flavonoids identified in CH, respectively. Nepetariaside and 1-methylene-5α-androstan-3α-ol-17-one glucuronide were the most abundant terpenoids and steroid derivatives identified in CH, respectively. To our knowledge, this study screened several classes of phytochemicals in CH for the first. Terpenoids and steroid derivatives were likely to be more major phytochemicals than phenolic acids and flavonoids in CH. The functionality of CH itself and the compounds found in CH might be utilized in functional foods or cosmetics. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01300-6.

2.
J Sci Food Agric ; 103(13): 6208-6218, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37148152

ABSTRACT

BACKGROUND: Black cumin seeds (black seed; BS) contain various bioactive compounds, such as thymoquinone (TQ). Roasting and ultrasound-assisted enzymatic treatment (UAET) as pre-treatments can increase the phytochemical content in the BS oil. This study aimed to investigate the effects of pre-treatments on the TQ content and the yield of the BS oil and to profile the composition of defatted BS meal (DBSM), followed by evaluating antioxidant properties of the DBSM. RESULTS: The extraction yield of crude oil from BS was not affected by the roasting time. The highest extraction yield (47.8 ± 0.4%) was obtained with UAET cellulase-pH 5 (enzyme concentration of 100%). Roasting decreased the TQ content of the oil, while the UAET cellulase-pH 5 treatment with an enzyme concentration of 100% yielded the highest TQ (125.1 ± 2.7 µg mL-1 ). Additionally, the UAET cellulase-pH 5 treatment increased total phenolics and flavonoids of DBSM by approximately two-fold, compared to roasting or ultrasound treatment (UT) alone. Principal component analysis revealed that the UAET method might be more suitable for extracting BS oil with higher TQ content than roasting and UT. CONCLUSION: Compared to roasting or UT, using ultrasound along with cellulase could improve the oil yield and TQ in the oil from BS and obtain the DBSM with higher phenolics, flavonoids, and antioxidant activity. © 2023 Society of Chemical Industry.


Subject(s)
Cellulases , Nigella sativa , Antioxidants/analysis , Nigella sativa/chemistry , Benzoquinones/chemistry , Seeds/chemistry , Flavonoids/analysis , Cellulases/analysis
3.
Food Funct ; 14(9): 4049-4064, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37073737

ABSTRACT

This study aimed to investigate the anti-inflammatory effects of ellagitannins from black raspberry seeds (BS) in vivo and the structural effects of ellagitannins on glucagon-like peptide-1 (GLP-1) secretion and intestinal bitter taste receptor (TAS2R) stimulation. For animal study, BS ellagitannin fraction (BSEF) was orally administered to mice with colitis induced by dextran sulfate sodium (DSS). The BSEF supplementation alleviated colonic inflammation, regulated inflammation-related cytokine levels in the mice with colitis, and increased the total GLP-1 secretion and GLP-1 receptor mRNA level in the inflamed gut. It also augmented the colonic gene expressions of mouse TAS2R (mTAS2R) 108, 119, 126, 131, 138, and 140; meanwhile, only mTAS2R108 expression was downregulated by DSS treatment. Six BS ellagitannins (sanguiin H-6, casuarictin, pedunculagin, acutissimin A, castalagin, and vescalagin) induced GLP-1 secretion in STC-1 cells and upregulated mTAS2R108, 119, 126, and 138 gene expressions. The major ellagitannins in BS (sanguiin H-6, casuarictin, pedunculagin, and acutissimin A) upregulated the gene expressions of mTAS2R131 and/or 140 known to be specifically distributed in mouse colon. Through molecular docking with mTAS2R108, the hexahydroxydiphenoyl, flavan-3-ol, glucose, and nonahydroxytriphenoyl moieties of the six BS ellagitannins were predicted to be involved in interacting with the receptor. BS ellagitannins could be promising candidates for preventing colon inflammation, likely via GLP-1 secretion induced by intestine-specific TAS2Rs.


Subject(s)
Colitis , Rubus , Mice , Animals , Hydrolyzable Tannins/pharmacology , Glucagon-Like Peptide 1/metabolism , Rubus/metabolism , Taste , Molecular Docking Simulation , Colitis/chemically induced , Colitis/drug therapy , Colitis/genetics , Inflammation , Anti-Inflammatory Agents/therapeutic use , Glucagon-Like Peptide 2/adverse effects
4.
Food Sci Biotechnol ; 32(4): 577-587, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36911337

ABSTRACT

In our previous study, black raspberry (BR) reduced the serum levels of trimethylamine-N-oxide and cholesterol in rats fed excessive choline with a high-fat diet (HFC). We hypothesized that gut microbiota could play a crucial role in the production of trimethylamine and microbial metabolites, and BR could influence gut microbial composition. This study aimed to elucidate the role of BR on changes in gut microbiota and microbial metabolites in the rats. The phylogenetic diversity of gut microbiota was reduced in the rats fed HFC, while that in the BR-fed group was restored. The BR supplementation enriched Bifidobacterium and reduced Clostridium cluster XIVa. In the BR-fed group, most cecal bile acids and hippuric acid increased, while serum lithocholic acid was reduced. The BR supplementation upregulated Cyp7a1 and downregulated Srebf2. These results suggest that BR extract may change gut bacterial community, modulate bile acids, and regulate gene expression toward reducing cholesterol. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01267-4.

5.
Food Sci Biotechnol ; 31(8): 1041-1051, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35873380

ABSTRACT

Blood trimethylamine-N-oxide (TMAO) has been associated with cardiovascular disease. Black raspberry (Rubus occidentalis, BR) has been regarded to be beneficial for cardiovascular health. This study aimed to investigate how BR extract affects serum lipid profile, gut microbial composition, metabolites in rats fed TMAO with a high-fat diet. Dietary TMAO increased serum LDL cholesterol, while BR extract decreased its level. α-Diversity of gut microbiota was not changed; however, in the rats fed TMAO, Macellibacteroides and Mucispirillum were enriched, while Ruminococcaceae was reduced. The BR supplementation could restore Macellibacteroides, Clostridium, and Ruminococcaceae. The BR supplementation increased cecal hippuric acid and serum farnesoid X receptor-antagonistic bile acids, including ursodeoxycholic acid (UDCA), tauro-α-muricholic acid, and tauro-UDCA. The BR supplementation tended to upregulate Cyp7a1 and Abcg5 expressions while downregulating Srebf2 and Hmgcr expressions. BR extract affects the gut bacterial community and microbial metabolites, lowering serum LDL cholesterol in rats with elevated serum TMAO. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01079-y.

6.
Food Chem ; 396: 133712, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35863176

ABSTRACT

This study aimed to identify ellagitannins in black raspberry seeds (BRS) and to optimize accelerated solvent extraction of ellagitannins using an artificial neural network (ANN) coupled with genetic algorithm. Fifteen monomeric and dimeric ellagitannins were identified in BRS. For ANN modeling, extraction time, extraction temperature, and solvent concentration were set as input variables, and total ellagitannin content was set as output variable. The trained ANN had a mean squared error value of 0.0102 and a regression correlation coefficient of 0.9988. The predicted optimal extraction conditions for maximum total ellagitannin content were 63.7% acetone, 4.21 min, and 43.9 °C. The actual total ellagitannin content under the optimal extraction conditions was 13.4 ± 0.0 mg/g dry weight, and the prediction error was 0.75 ± 0.27%. This study is the first attempt to analyze the composition of ellagitannins in BRS and to determine optimal extraction conditions for maximum total ellagitannin content from BRS.


Subject(s)
Nigella sativa , Rubus , Hydrolyzable Tannins , Neural Networks, Computer , Seeds , Solvents
7.
J Food Sci ; 87(7): 2831-2846, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35661363

ABSTRACT

Buckwheat hulls are discarded as waste, although they have more phenolic compounds than buckwheat groats. The antioxidant activities of buckwheat hull extracts prepared with water, 50% ethanol, and 100% ethanol were investigated in bulk oil, oil-in-water (O/W), and water-in-oil (W/O) emulsions. The relationship between the phenolic compositions of the extracts and their antioxidant activities in the three different lipid systems was also evaluated. Fifty percent ethanol extract had the highest total phenolic content (327 mg gallic acid equivalent [GAE]/g extract) followed by water and 100% ethanol extracts (211 and 163 mg GAE/g extract, respectively). The total oxidation rate (k) was not significantly different among the bulk oils added with the buckwheat hull extracts. However, in the O/W emulsion, the k was more reduced by the 50% and 100% ethanol extracts than by the water extract at the concentration of 100 µg GAE/g (2.9, 2.8, and 3.7 Totox/day, respectively). The k of the W/O emulsion was more reduced by the 100% ethanol extract than by the water and 50% ethanol extract at the concentration of 100 µg GAE/g (3.8, 4.7, and 4.5 Totox/day, respectively). Multivariate statistical analysis revealed that the contents of phenolic acids and their derivatives were the highest in the water extract among the extracts, while the contents of flavonoid glycosides and methylated polyphenols were the highest in the 50% and 100% ethanol extracts, respectively. The results suggest that flavonoid glycosides and methylated polyphenols could be potential candidates for retarding the oxidation of the emulsion system. PRACTICAL APPLICATION: Buckwheat hull extracts could retard lipid oxidation. Flavonoid glycosides and methylated polyphenols in buckwheat hull extracts may have an antioxidative effect on lipids. Thus, buckwheat hulls could be used as an antioxidant in lipid systems, as flavonoid glycosides and methylated polyphenols are properly extracted from buckwheat hulls.


Subject(s)
Antioxidants , Fagopyrum , Oils , Phenols , Antioxidants/analysis , Antioxidants/isolation & purification , Antioxidants/pharmacology , Emulsions/chemistry , Ethanol/chemistry , Fagopyrum/chemistry , Flavonoids/analysis , Gallic Acid/analysis , Glycosides/analysis , Glycosides/isolation & purification , Glycosides/pharmacology , Oils/chemistry , Phenols/analysis , Phenols/isolation & purification , Phenols/pharmacology , Plant Extracts/analysis , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Polyphenols/analysis , Polyphenols/isolation & purification , Polyphenols/pharmacology , Seeds/chemistry
8.
Sci Rep ; 12(1): 4763, 2022 03 19.
Article in English | MEDLINE | ID: mdl-35306534

ABSTRACT

Bacterial vaginosis (BV) is the most common vaginal infection in reproductive women, which is characterized by depleted level of lactic acid bacteria and overgrowth of anaerobes such as Gardnerella vaginalis spp. Lactic acid bacteria have been known to be beneficial for amelioration of BV, since they produce antimicrobial substances against G. vaginalis spp. The objectives of this study were to characterize different fractions of cell-free supernatant of Lactobacillus paracasei CH88 (LCFS) and investigate antibacterial activity of the LCFS fractions against G. vaginalis in-vitro and in-vivo. Antibacterial activity of the LCFS was stable during thermal treatment up to 120 °C for 30 min and maintained at pH ranging from 3.0 to 13.0 except pH 5.0. Fraction below 3 kDa of the LCFS partially lost its antibacterial activity after treatment with proteolytic enzymes. Precipitated protein fraction below 3 kDa of the LCFS (< 3 kDa LCFSP) inhibited the growth and biofilm formation of G. vaginalis. Treatment of L. paracasei CH88 or the < 3 kDa LCFSP attenuated G. vaginalis-induced BV in mice by inhibiting the growth of G. vaginalis, reducing exfoliation of vaginal epithelial cells, and regulating immune response. These results suggest that L. paracasei CH88 may have potential in ameliorating G. vaginalis-induced BV.


Subject(s)
Lacticaseibacillus paracasei , Vaginosis, Bacterial , Animals , Anti-Bacterial Agents/pharmacology , Bacteria, Anaerobic/physiology , Female , Gardnerella vaginalis , Humans , Mice , Vagina/microbiology , Vaginosis, Bacterial/microbiology
9.
Mol Med Rep ; 25(1)2022 01.
Article in English | MEDLINE | ID: mdl-34796906

ABSTRACT

Although multi­organ dysfunction is associated with the survival rate following cardiac arrest (CA), the majority of studies to date have focused on hearts and brains, and few studies have considered renal failure. The objective of the present study, therefore, was to examine the effects of therapeutic hypothermia on the survival rate, pathophysiology and antioxidant enzymes in rat kidneys following asphyxial CA. Rats were sacrificed one day following CA. The survival rate, which was estimated using Kaplan­Meier analysis, was 42.9% one day following CA. However, hypothermia, which was induced following CA, significantly increased the survival rate (71.4%). In normothermia rats with CA, the serum blood urea nitrogen level was significantly increased one day post­CA. In addition, the serum creatinine level was significantly increased one day post­CA. However, in CA rats exposed to hypothermia, the levels of urea nitrogen and creatinine significantly decreased following CA. Histochemical staining revealed a significant temporal increase in renal injury after the normothermia group was subjected to CA. However, renal injury was significantly decreased in the hypothermia group. Immunohistochemical analysis of the kidney revealed a significant decrease in antioxidant enzymes (copper­zinc superoxide dismutase, manganese superoxide dismutase, glutathione peroxidase and catalase) with time in the normothermia group. However, in the hypothermia group, these enzymes were significantly elevated following CA. Collectively, the results revealed that renal dysfunction following asphyxial CA was strongly associated with the early survival rate and therapeutic hypothermia reduced renal injury via effective antioxidant mechanisms.


Subject(s)
Acute Kidney Injury/drug therapy , Antioxidants/pharmacology , Asphyxia/complications , Asphyxia/therapy , Heart Arrest/therapy , Hypothermia, Induced/methods , Kidney/drug effects , Kidney/injuries , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Animals , Blood Urea Nitrogen , Brain/physiopathology , Creatinine , Disease Models, Animal , Heart/physiopathology , Hypothermia , Kidney/pathology , Kidney/physiopathology , Male , Rats , Rats, Sprague-Dawley , Survival Rate
10.
Int J Mol Sci ; 22(12)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201389

ABSTRACT

The objective of this study was to determine reactive oxygen species (ROS) produced by fagopyrin F-rich fraction (FFF) separated from Tartary buckwheat flower extract exposed to lights and to investigate its antibacterial photodynamic inactivation (PDI) against Streptococcus mutans and its biofilm. ROS producing mechanisms involving FFF with light exposure were determined using a spectrophotometer and a fluorometer. S. mutans and its biofilm inactivation after PDI treatment of FFF using blue light (BL; 450 nm) were determined by plate count method and crystal violet assay, respectively. The biofilm destruction by ROS produced from FFF after exposure to BL was visualized using confocal laser scanning microscopy (CLSM) and field emission scanning electron microscope (FE-SEM). BL among 3 light sources produced type 1 ROS the most when applying FFF as a photosensitizer. FFF exposed to BL (5 and 10 J/cm2) significantly more inhibited S. mutans viability and biofilm formation than FFF without the light exposure (p < 0.05). In the PDI of FFF exposed to BL (10 J/cm2), an apparent destruction of S. mutans and its biofilm were observed by the CLSM and FE-SEM. Antibacterial PDI effect of FFF was determined for the first time in this study.


Subject(s)
Biofilms/growth & development , Fagopyrum/chemistry , Flowers/chemistry , Photosensitizing Agents/pharmacology , Plant Extracts/pharmacology , Quinones/pharmacology , Streptococcus mutans/growth & development , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Light , Photochemotherapy , Streptococcus mutans/drug effects
11.
Can Respir J ; 2020: 3406530, 2020.
Article in English | MEDLINE | ID: mdl-32184906

ABSTRACT

Background: Fibroblast dysfunction is the main pathogenic mechanism underpinning idiopathic pulmonary fibrosis (IPF). Potassium voltage-gated channel subfamily J member 2 (KCNJ2) plays critical roles in the proliferation of myofibroblasts and in the development of cardiac fibrosis. Objectives: This study aimed to evaluate the role of KCNJ2 in IPF. Methods: KCNJ2 mRNA expression was measured using real-time PCR in fibroblasts from IPF patients and normal controls (NCs). Protein concentrations were measured by ELISA in bronchoalveolar lavage (BAL) fluid obtained from NCs (n = 30), IPF (n = 30), IPF (n = 30), IPF (n = 30), IPF (n = 30), IPF (. Results: KCNJ2 mRNA expression was measured using real-time PCR in fibroblasts from IPF patients and normal controls (NCs). Protein concentrations were measured by ELISA in bronchoalveolar lavage (BAL) fluid obtained from NCs (n = 30), IPF (n = 30), IPF (p < 0.001). KCNJ2 protein levels in BAL fluid were significantly higher in IPF (6.587 [1.441-26.01] ng/mL) than in NCs (0.084 [0.00-0.260] ng/mL, p < 0.001). KCNJ2 protein levels in BAL fluid were significantly higher in IPF (6.587 [1.441-26.01] ng/mL) than in NCs (0.084 [0.00-0.260] ng/mL, p < 0.001). KCNJ2 protein levels in BAL fluid were significantly higher in IPF (6.587 [1.441-26.01] ng/mL) than in NCs (0.084 [0.00-0.260] ng/mL, p < 0.001). KCNJ2 protein levels in BAL fluid were significantly higher in IPF (6.587 [1.441-26.01] ng/mL) than in NCs (0.084 [0.00-0.260] ng/mL, p < 0.001). KCNJ2 protein levels in BAL fluid were significantly higher in IPF (6.587 [1.441-26.01] ng/mL) than in NCs (0.084 [0.00-0.260] ng/mL. Conclusion: KCNJ2 may participate in the development of IPF, and its protein level may be a candidate diagnostic and therapeutic molecule for IPF.


Subject(s)
Bronchoalveolar Lavage Fluid/cytology , Fibroblasts/metabolism , Idiopathic Pulmonary Fibrosis , Lung , Potassium Channels, Inwardly Rectifying , Bronchoalveolar Lavage/methods , Correlation of Data , Female , Humans , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Lung/pathology , Male , Middle Aged , Potassium Channels, Inwardly Rectifying/analysis , Potassium Channels, Inwardly Rectifying/genetics , Up-Regulation
12.
J Asthma ; 57(8): 875-885, 2020 08.
Article in English | MEDLINE | ID: mdl-31122089

ABSTRACT

Background: Few studies have evaluated the impact of air pollution levels on the severity of exacerbations. Thus, we compared the relative risks posed by air pollutant levels on moderate and severe exacerbations.Methods: Exacerbation episodes of 618 from 143 adult asthmatics were retrospectively collected between 2005 and 2015 in a tertiary hospital of Korea. Air pollution GPS data for the location closest to each patient's home were obtained from the national ambient monitoring station. The relative impacts of air pollutants on asthma exacerbations were evaluated via a time-trend controlled symmetrical, bidirectional, case-crossover design using conditional logistic regression models on the day of the exacerbation (T-0) and up to 3 days before the exacerbation (T-1-T-3).Results: Overall asthma exacerbation were associated with O3 levels in summer and winter (OR: 1.012[1.003-1.02] and 1.009[1.003-1.016]), SO2 levels in spring and summer (OR: 1.009[1-1.018] and 1.02[1.006-1.035]) and NO2 levels in winter (OR: 1.007[1.003-1.011]). Analyses of the temporal relationship between O3 concentrations and exacerbations demonstrated that 63.2% of episodes in the summer occurred when the O3 concentrations on T-1 were significantly higher than those on control days, while 51% of exacerbation episodes in the winter occurred. Severe and moderate exacerbations were similarly associated with O3 levels in winter (OR: 1.012 [1.003-1.02] vs. 1.01 [0.999-1.021], p > 0.05) and in summer (OR: 1.006 [1.002-1.009] vs. 1.009 [1.003-1.016], p > 0.05).Conclusions: Asthma exacerbations may be associated with the seasonal elevation of O3, SO2 and NO2 levels in summer and winter with the similar relative risk between moderate and severe exacerbations.


Subject(s)
Air Pollutants/adverse effects , Air Pollution/adverse effects , Asthma/diagnosis , Severity of Illness Index , Symptom Flare Up , Adolescent , Adult , Aged , Aged, 80 and over , Air Pollutants/analysis , Asthma/epidemiology , Asthma/etiology , Cross-Over Studies , Environmental Monitoring/statistics & numerical data , Female , Humans , Male , Middle Aged , Nitrogen Dioxide/adverse effects , Nitrogen Dioxide/analysis , Ozone/adverse effects , Ozone/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Republic of Korea/epidemiology , Retrospective Studies , Seasons , Sulfur Dioxide/adverse effects , Sulfur Dioxide/analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...