Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
1.
Anim Cells Syst (Seoul) ; 28(1): 381-391, 2024.
Article in English | MEDLINE | ID: mdl-39100550

ABSTRACT

Allergic asthma, a type of chronic airway inflammation, is a global health concern because of its increasing incidence and recurrence rates. Camellia sinensis L. yields a variety type of teas, which are also used as medicinal plants in East Asia and are known to have antioxidant, anti-inflammatory, and immune-potentiating properties. Here, we examined the constituents of C. sinensis L. extract (CSE) and evaluated the protective effects of CSE on allergic asthma by elucidating the underlying mechanism. To induce allergic asthma, we injected the sensitization solution (mixture of ovalbumin (OVA) and aluminum hydroxide) into mice intraperitoneally on days 0 and 14. Then, the mice were exposed to 1% OVA by a nebulizer on days 21 to 23, while intragastric administration of CSE (30 and 100 mg/kg) was performed each day on days 18 to 23. We detected five compounds in CSE, including (-)-epigallocatechin, caffeine, (-)-epicatechin, (-)-epigallocatechin gallate, and (-)-epicatechin gallate. Treatment with CSE remarkably decreased the airway hyperresponsiveness, OVA-specific immunoglobulin E level, and inflammatory cell and cytokine levels of mice, with a decrease in inflammatory cell infiltration and mucus production in lung tissue. Treatment with CSE also decreased the phosphorylation of nuclear factor-κB (NF-κB) and the expression of matrix-metalloproteinase (MMP)-9 in asthmatic mice. Our results demonstrated that CSE reduced allergic airway inflammation caused by OVA through inhibition of phosphorylated NF-κB and MMP-9 expression.

2.
Sci Adv ; 10(28): eadl6280, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996018

ABSTRACT

H3K4 methylation by Set1-COMPASS (complex of proteins associated with Set1) is a conserved histone modification. Although it is critical for gene regulation, the posttranslational modifications of this complex that affect its function are largely unexplored. This study showed that N-terminal acetylation of Set1-COMPASS proteins by N-terminal acetyltransferases (NATs) can modulate H3K4 methylation patterns. Specifically, deleting NatA substantially decreased global H3K4me3 levels and caused the H3K4me2 peak in the 5' transcribed regions to shift to the promoters. NatA was required for N-terminal acetylation of three subunits of Set1-COMPASS: Shg1, Spp1, and Swd2. Moreover, deleting Shg1 or blocking its N-terminal acetylation via proline mutation of the target residue drastically reduced H3K4 methylation. Thus, NatA-mediated N-terminal acetylation of Shg1 shapes H3K4 methylation patterns. NatB also regulates H3K4 methylation, likely via N-terminal acetylation of the Set1-COMPASS protein Swd1. Thus, N-terminal acetylation of Set1-COMPASS proteins can directly fine-tune the functions of this complex, thereby substantially shaping H3K4 methylation patterns.


Subject(s)
Histone-Lysine N-Methyltransferase , Histones , Saccharomyces cerevisiae Proteins , Acetylation , Histones/metabolism , Methylation , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Protein Processing, Post-Translational , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics
3.
Exp Mol Med ; 56(6): 1233-1234, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38871813
4.
Microorganisms ; 12(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38930422

ABSTRACT

Natural astaxanthin is in high demand due to its multiple health benefits. The microalga Haematococcus lacustris has been used for the commercial production of astaxanthin. In this study, we investigated the effects of six different media with and without a nitrogen source and supplementation with nine organic compounds on the growth and astaxanthin accumulation of H. lacustris. The highest astaxanthin contents were observed in cultures of H. lacustris in Jaworski's medium (JM), with a level of 9.099 mg/L in JM with a nitrogen source supplemented with leucine (0.65 g/L) and of 20.484 mg/L in JM without a nitrogen source supplemented with sodium glutamate (0.325 g/L). Six of the nine organic compounds examined (leucine, lysine, alanine, sodium glutamate, glutamine, and cellulose) enhanced the production of astaxanthin in H. lacustris, while malic acid, benzoic acid, and maltose showed no beneficial effects.

5.
Diagnostics (Basel) ; 14(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928628

ABSTRACT

The purposes of this study were to develop an artificial intelligence (AI) model for future breast cancer risk prediction based on mammographic images, investigate the feasibility of the AI model, and compare the AI model, clinical statistical risk models, and Mirai, a state of-the art deep learning algorithm based on screening mammograms for 1-5-year breast cancer risk prediction. We trained and developed a deep learning model using a total of 36,995 serial mammographic examinations from 21,438 women (cancer-enriched mammograms, 17.5%). To determine the feasibility of the AI prediction model, mammograms and detailed clinical information were collected. C-indices and area under the receiver operating characteristic curves (AUCs) for 1-5-year outcomes were obtained. We compared the AUCs of our AI prediction model, Mirai, and clinical statistical risk models, including the Tyrer-Cuzick (TC) model and Gail model, using DeLong's test. A total of 16,894 mammograms were independently collected for external validation, of which 4002 were followed by a cancer diagnosis within 5 years. Our AI prediction model obtained a C-index of 0.76, with AUCs of 0.90, 0.84, 0.81, 0.78, and 0.81, to predict the 1-5-year risks. Our AI prediction model showed significantly higher AUCs than those of the TC model (AUC: 0.57; p < 0.001) and Gail model (AUC: 0.52; p < 0.001), and achieved similar performance to Mirai. The deep learning AI model using mammograms and AI-powered imaging biomarkers has substantial potential to advance accurate breast cancer risk prediction.

6.
Healthcare (Basel) ; 12(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38786427

ABSTRACT

Conventional treatments for allergic rhinitis (AR) exhibit insufficiency and long-term use-related side effects. Considering the reported anti-inflammatory and immunoregulatory effects of Bojungikgi-tang (BJIGT), we aimed to assess its efficacy on persistent AR (PAR). Patients with PAR were randomly assigned in a 1:1:1 ratio into high-dose BJIGT, standard-dose BJIGT, and placebo groups, followed by 1-week run-in and 4-week treatment periods. The primary outcome included the mean change in Total Nasal Symptom Score (TNSS), with secondary outcomes encompassing the Korean Allergic Rhinitis-Specific Quality of Life Questionnaire, biomarkers, overall assessment, TNSS by AR pattern identification, and the Sasang constitution. The mean TNSS change was more improved in the BJIGT group than in the placebo group; however, no statistically significant differences were observed. Additional interaction effect analysis revealed a statistically significant improvement in the high-dose BJIGT group compared with the placebo group from weeks 1-2 to weeks 3-4. Regarding secondary outcomes, the BJIGT group exhibited similar or improved results compared with the placebo group, showing no statistically significant differences. No serious adverse effects or clinically significant changes in safety assessments were observed. Given that this study validated clinical improvement and safety, it serves as potential groundwork for pertinent future studies.

7.
Adv Sci (Weinh) ; 11(28): e2309702, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704672

ABSTRACT

This paper presents the first scanning electron microscopy (SEM)-based DNA imaging in biological samples. This novel approach incorporates a metal-free electro-stain reagent, formulated by combining DNA-binding proteins and synthetic polymers to enhance the visibility of 2-nm-thick DNA under SEM. Notably, DNA molecules stain with proteins and polymers appear as dark lines under SEM. The resulting DNA images exhibit a thickness of 15.0±4.0 nm. As SEM is the primary platform, it integrates seamlessly with various chemically functionalized large surfaces with the aid of microfluidic devices. The approach allows high-resolution imaging of various DNA structures including linear, circular, single-stranded DNA and RNA, originating from nuclear and mitochondrial genomes. Furthermore, quantum dots are successfully visualized as bright labels that are sequence-specifically incorporated into DNA molecules, which highlights the potential for SEM-based optical DNA mapping. In conclusion, DNA imaging using SEM with the novel electro-stain offers electron microscopic resolution with the ease of optical microscopy.


Subject(s)
DNA-Binding Proteins , DNA , Microscopy, Electron, Scanning , Polymers , Microscopy, Electron, Scanning/methods , DNA/chemistry , DNA/metabolism , Polymers/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/ultrastructure , DNA-Binding Proteins/chemistry , Quantum Dots/chemistry
8.
Biomed Pharmacother ; 176: 116765, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788600

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by skin barrier dysfunction and chronic inflammatory responses. Reynoutria japonica, known as Huzhang in traditional Chinese Medicine, can enhance blood circulation to eliminate wind pathogens and terminate coughing. Despite pharmacological evidence supporting the efficacy of R. japonica in suppressing edema-induced skin inflammation or connective tissue diseases, its pharmaceutical potential for treating AD-like skin inflammation remains unexplored. This study investigated the possible effects of R. japonica ethanol extract (RJE) on Dermatophagoides farinae extract (DfE)-induced AD-like skin inflammation in NC/Nga mice. To elucidate the underlying mechanisms by which RJE inhibits skin inflammation, we examined the effect of RJE on IFN-γ/TNF-α-induced signal transducer and activator of transcription (STAT) signaling in human epidermal keratinocytes (HEKs) and human dermal fibroblasts (HDFs). Our findings revealed that RJE mitigates DfE-induced AD-like symptoms and skin barrier disruptions in mouse skin lesions. Moreover, RJE attenuated DfE-induced mast cell infiltration and serum levels of inflammatory cytokines (IL-1α, IL-1ß, IL-6, IL-23, IFN-γ, TNF-α, and GM-CSF). RJE also inhibited IFN-γ/TNF-α-induced chemokine levels and STAT3 phosphorylation in HEKs and HDFs. Virtual binding analysis of the RJE components suggested that emodin-8-ß-D-glucoside binds to Janus kinase (JAK) 1/2, thereby suppressing STAT signaling, which was confirmed by Western blot analysis. In conclusion, our results suggest that RJE may alleviate DfE-induced skin barrier dysfunction by inhibiting JAK/STAT signaling and the proinflammatory immune response through the suppression of inflammatory mediators in AD-like skin disease. These findings suggest that RJE has potential as an effective therapy for AD management.


Subject(s)
Dermatitis, Atopic , Dermatophagoides farinae , Janus Kinases , STAT Transcription Factors , Signal Transduction , Animals , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Dermatitis, Atopic/chemically induced , Signal Transduction/drug effects , Mice , STAT Transcription Factors/metabolism , Janus Kinases/metabolism , Humans , Glucosides/pharmacology , Cytokines/metabolism , Male , Skin/drug effects , Skin/pathology , Skin/metabolism , Emodin/pharmacology , Emodin/analogs & derivatives , Keratinocytes/drug effects , Keratinocytes/metabolism , Plant Extracts/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology
9.
Bone Res ; 12(1): 29, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38744829

ABSTRACT

Mature osteoclasts degrade bone matrix by exocytosis of active proteases from secretory lysosomes through a ruffled border. However, the molecular mechanisms underlying lysosomal trafficking and secretion in osteoclasts remain largely unknown. Here, we show with GeneChip analysis that RUN and FYVE domain-containing protein 4 (RUFY4) is strongly upregulated during osteoclastogenesis. Mice lacking Rufy4 exhibited a high trabecular bone mass phenotype with abnormalities in osteoclast function in vivo. Furthermore, deleting Rufy4 did not affect osteoclast differentiation, but inhibited bone-resorbing activity due to disruption in the acidic maturation of secondary lysosomes, their trafficking to the membrane, and their secretion of cathepsin K into the extracellular space. Mechanistically, RUFY4 promotes late endosome-lysosome fusion by acting as an adaptor protein between Rab7 on late endosomes and LAMP2 on primary lysosomes. Consequently, Rufy4-deficient mice were highly protected from lipopolysaccharide- and ovariectomy-induced bone loss. Thus, RUFY4 plays as a new regulator in osteoclast activity by mediating endo-lysosomal trafficking and have a potential to be specific target for therapies against bone-loss diseases such as osteoporosis.


Subject(s)
Endosomes , Lysosomes , Osteoclasts , Animals , Female , Mice , Bone Resorption/metabolism , Bone Resorption/pathology , Bone Resorption/genetics , Cathepsin K/metabolism , Cathepsin K/genetics , Cell Differentiation , Endosomes/metabolism , Gene Deletion , Lysosomes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Osteoclasts/metabolism , Protein Transport , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , rab7 GTP-Binding Proteins , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
10.
Nanoscale Adv ; 6(8): 2013-2025, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38633052

ABSTRACT

Adhesion has attracted great interest in science and engineering especially in the field pertaining to nano-science because every form of physical contact is fundamentally a macroscopic observation of interactions between nano-asperities under the adhesion phenomenon. Despite its importance, no practical adhesion prediction model has been developed due to the complexity of examining contact between nano-asperities. Here, we scrutinized the contact phenomenon and developed a contact model, reflecting the physical sequence in which adhesion develops. For the first time ever, our model analyzes the adhesion force and contact properties, such as separation distance, contact location, actual contact area, and the physical deformation of the asperities, between rough surfaces. Through experiments using atomic force microscopy, we demonstrated a low absolute percentage error of 2.8% and 6.55% between the experimental and derived data for Si-Si and Mo-Mo contacts, respectively, and proved the accuracy and practicality of our model in the analysis of the adhesion phenomenon.

12.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38543055

ABSTRACT

Scutellaria baicalensis Georgi and Raphanus Sativus Linne herbal mixture (SRE) is a Chinese herbal medicine. In this study, we aimed to evaluate the therapeutic efficacy of SRE as an active ingredient for 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD) and to predict the underlying therapeutic mechanisms and involved pathways using network pharmacological analysis. Treatment with SRE accelerated the development of AD-like lesions, improving thickness and edema of the epidermis. Moreover, administering the SRE to AD-like mice suppressed immunoglobulin E and interleukin-4 cytokine and reduced T lymphocyte differentiation. In silico, network analysis was used to predict the exact genes, proteins, and pathways responsible for the therapeutic effect of the SRE against DNCB-induced AD. These results indicated that the SRE exerted protective effects on the DNCB-induced AD-like model by attenuating histopathological changes and suppressing the levels of inflammatory mediators. Therefore, the SRE can potentially be a new remedy for improving AD and other inflammatory diseases and predicting the intracellular signaling pathways and target genes involved. This therapeutic effect of the SRE on AD can be used to treat DNCB-induced AD and its associated symptoms.

13.
Biomed Pharmacother ; 173: 116319, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422654

ABSTRACT

BACKGROUND: Effects of Dictamnus dasycarpus Turcz. on allergic asthma and their underlying mechanisms remain unclarified. Thus, we investigated the effects of D. dasycarpus Turcz. water extract (DDW) on mucus hypersecretion in mice with ovalbumin (OVA)-induced asthma and human bronchial epithelial cells. METHODS: BALB/c mice were used to establish an OVA-induced allergic asthma model. Mice were grouped into the OVA sensitization/challenge, 100 and 300 mg/kg DDW treatment, and dexamethasone groups. In mice, cell counts in bronchoalveolar lavage fluid (BALF), serum and BALF analyses, and histopathological lung tissue analyses were performed. Furthermore, we confirmed the basic mechanism in interleukin (IL)-4/IL-13-treated human bronchial epithelial cells through western blotting. RESULTS: In OVA-induced asthma mice, DDW treatment reduced inflammatory cell number and airway hyperresponsiveness and ameliorated histological changes (immune cell infiltration, mucus secretion, and collagen deposition) in lung tissues and serum total immunoglobulin E levels. DDW treatment lowered BALF IL-4, IL-5, and IL-13 levels; reduced levels of inflammatory mediators, such as thymus- and activation-regulated chemokine, macrophage-derived chemokine, and interferon gamma-induced protein; decreased mucin 5AC (MUC5AC) production; decreased signal transducer and activator of transcription (STAT) 6 and STAT3 expression; and restored forkhead box protein A2 (FOXA2) expression. In IL-4/IL-13-treated human bronchial epithelial cells, DDW treatment inhibited MUC5AC production, suppressed STAT6 and STAT3 expression (related to mucus hypersecretion), and increased FOXA2 expression. CONCLUSIONS: DDW treatment modulates MUC5AC expression and mucus hypersecretion by downregulating STAT6 and STAT3 expression and upregulating FOXA2 expression. These findings provide a novel approach to manage mucus hypersecretion in asthma using DDW.


Subject(s)
Asthma , Dictamnus , Hepatocyte Nuclear Factor 3-beta , STAT3 Transcription Factor , Mice , Humans , Animals , Interleukin-13/metabolism , Interleukin-4/metabolism , Ovalbumin , Disease Models, Animal , Asthma/chemically induced , Asthma/drug therapy , Lung , Inflammation/metabolism , Mucus/metabolism , Bronchoalveolar Lavage Fluid , Mice, Inbred BALB C , Cytokines/metabolism , STAT6 Transcription Factor/metabolism
15.
Small ; 20(13): e2306154, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37967353

ABSTRACT

Hierarchical superstructures have novel shape-dependent properties, but well-defined anisotropic carbon superstructures with controllable size, shape, and building block dimensionality have rarely been accomplished thus far. Here, a hierarchical assembly technique is presented that uses spinodal decomposition (SD) to synthesize anisotropic oblate particles of mesoporous carbon superstructure (o-MCS) with nanorod arrays by integrating block-copolymer (BCP) self-assembly and polymer-polymer interface behaviors in binary blends. The interaction of major and minor phases in binary polymer blends leads to the formation of an anisotropic oblate particle, and the BCP-rich phase enables ordered packing and unidirectional alignment of carbon nanorods. Consequently, this approach enables precise control over particles' size, shape, and over the dimensionality of their components. Exploiting this functional superstructure, o-MCS are used as an anode material in potassium-ion batteries, and achieve a notable specific capacity of 156 mA h g-1 at a current density of 2 A g-1, and long-term stability for 3000 cycles. This work presents a significant advancement in the field of hierarchical superstructures, providing a promising strategy for the design and synthesis of anisotropic carbon materials with controlled properties, offering promising applications in energy storage and beyond.

16.
Small ; 20(2): e2304555, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37649204

ABSTRACT

Toxic gases have surreptitiously influenced the health and environment of contemporary society with their odorless/colorless characteristics. As a result, a pressing need for reliable and portable gas-sensing devices has continuously increased. However, with their negligence to efficiently microstructure their bulky supportive layer on which the sensing and heating materials are located, previous semiconductor metal-oxide gas sensors have been unable to fully enhance their power efficiency, a critical factor in power-stringent portable devices. Herein, an ultrathin insulation layer with a unique serpentine architecture is proposed for the development of a power-efficient gas sensor, consuming only 2.3 mW with an operating temperature of 300 °C (≈6% of the leading commercial product). Utilizing a mechanically robust serpentine design, this work presents a fully suspended standalone device with a supportive layer thickness of only ≈50 nm. The developed gas sensor shows excellent mechanical durability, operating over 10 000 on/off cycles and ≈2 years of life expectancy under continuous operation. The gas sensor detected carbon monoxide concentrations from 30 to 1 ppm with an average response time of ≈15 s and distinguishable sensitivity to 1 ppm (ΔR/R0 = 5%). The mass-producible fabrication and heating efficiency presented here provide an exemplary platform for diverse power-efficient-related devices.

17.
J Shoulder Elbow Surg ; 33(7): 1577-1585, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38110113

ABSTRACT

BACKGROUND: Treating symptomatic, massive, irreparable rotator cuff tears remains challenging and controversial. Superior capsule reconstruction (SCR) using the tensor fascia lata has shown promising clinical results; however, due to donor site morbidity, interest in SCR using other grafts has increased. Yet, no studies have compared allografts with xenografts. In addition, the clinical results of graft tears remain controversial. This study compared the clinical and radiological outcomes of SCR between those with allografts and xenografts. METHODS: Sixty-seven patients who had undergone SCR with allografts or xenografts between January 2016 and December 2020 were included in this retrospective study. Furthermore, 62 patients were evaluated 2 years postsurgery, with five patients excluded due to loss to follow-up or conversion to reverse shoulder arthroplasty. The Constant, American Shoulder and Elbow Surgeons, and visual analog scale scores, range of motion, and radiological outcomes were evaluated before the surgery and at 6 and 24 months after surgery. RESULTS: The graft tear rate was 23.08% in the allograft group and 42.86% in the xenograft group at 6 months after surgery; at 2 years postsurgery, the gap further widened to 32.43% and 64%, respectively, showing a significant difference. The graft in the allograft group was thicker than that in the xenograft group, and there were significant differences on the humeral side and in the midsubstance area. The allograft group showed significantly better visual analog scale, Constant, and American Shoulder and Elbow Surgeons scores than the xenograft group 2 years postsurgery. However, the difference in clinical outcomes between the two groups did not surpass minimal clinically important differences. CONCLUSION: Although arthroscopic SCR using xenografts had significantly lower clinical outcome than allografts, this difference did not reach minimal clinically important differences. Arthroscopic SCR using xenografts showed higher graft tear rates than allografts. Even with partial tears, better results were obtained if the graft continuity was maintained. Additionally, after surgery, the xenograft showed less thickness than the allograft and resulted in more tears, specifically in the midsubstance area.


Subject(s)
Rotator Cuff Injuries , Humans , Retrospective Studies , Male , Female , Middle Aged , Rotator Cuff Injuries/surgery , Rotator Cuff Injuries/diagnostic imaging , Heterografts , Allografts , Aged , Plastic Surgery Procedures/methods , Range of Motion, Articular , Joint Capsule/surgery , Treatment Outcome , Transplantation, Homologous , Shoulder Joint/surgery , Shoulder Joint/diagnostic imaging
18.
Sci Adv ; 9(51): eadi3770, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38117887

ABSTRACT

Steroids are the standard treatment for allergic airway inflammation in asthma, but steroid-refractory asthma poses a challenge. Group 2 innate lymphoid cells (ILC2s), such as T helper 2 (TH2) cells, produce key asthma-related type 2 cytokines. Recent insights from mouse and human studies indicate a potential connection between ILC2s and steroid-resistant asthma. Here, we highlight that lung ILC2s, rather than TH2 cells, can develop steroid resistance, allowing them to persist and maintain their disease-driving activity even during steroid treatment. The emergence of multipotent IL-5+IL-13+IL-17A+ ILC2s is associated with steroid-resistant ILC2s. The Janus kinase 3 (JAK3)/signal transducer and activator of transcription (STAT) 3, 5, and 6 pathways contribute to the acquisition of steroid-resistant ILC2s. The JAK3 inhibitor reduces ILC2 survival, proliferation, and cytokine production in vitro and ameliorates ILC2-driven Alternaria-induced asthma. Furthermore, combining a JAK3 inhibitor with steroids results in the inhibition of steroid-resistant asthma. These findings suggest a potential therapeutic approach for addressing this challenging condition in chronic asthma.


Subject(s)
Asthma , Janus Kinase Inhibitors , Humans , Animals , Mice , Immunity, Innate , Lymphocytes/metabolism , Asthma/drug therapy , Asthma/metabolism , Cytokines/metabolism , Inflammation , Steroids , Janus Kinase 3
19.
Sci Rep ; 13(1): 14594, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37670127

ABSTRACT

Atopic dermatitis (AD) is an allergic, inflammatory skin disease caused by immune dysregulation. In this study, we investigated anti-atopic and anti-inflammatory activities of Sanguisorba hakusanensis ethanol extract (SHE) both in vivo using NC/Nga mice and in vitro using human HaCaT keratinocytes. Oral administration of SHE suppressed several atopic symptoms associated with house dust mites (induced with Dermatophagoides farinae extract) in NC/Nga mice and decreased serum levels of inflammatory mediators such as immunoglobulin E, histamine, and inflammatory chemokines. Additionally, SHE treatment reduced the infiltration of immune cells such as mast cells and macrophages in AD skin lesions. In vitro, interferon-γ- and tumor necrosis factor-α-stimulated HaCaT cells exhibited increased expression of T helper 1 and 2 chemokines; their expression was inhibited by SHE treatment. The anti-inflammatory effects of SHE treatment involved blocking of the mitogen-activated protein kinase and signal transducer and activator of transcription 1 signaling pathways. In conclusion, SHE exerts potent anti-atopic and anti-inflammatory effects and should be considered for the clinical treatment of AD.


Subject(s)
Dermatitis, Atopic , Sanguisorba , Humans , Animals , Mice , Keratinocytes , HaCaT Cells , Ethanol
20.
Forensic Sci Int ; 350: 111780, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37515918

ABSTRACT

Marine biofouling occurs when microorganisms, plants, algae, or animals gather on any surface of a man-made object or natural structure. Biofouling organisms are important components of marine ecosystems and vary seasonally and regionally, with environmental factors such as temperature, amount of light, and nutrient availability. Since marine organisms have unique growth patterns, they can be used in marine forensic investigations to estimate time and environment. As few such studies have been done, this study analyzed the growth rates of Balanus on 100 × 100 mm panels of PVC, stainless steel, wood, and cloth and compared these with environmental factors such as temperature. Sets of panels were immersed in Sokcho Harbor, South Korea, each month, and observed monthly after immersion using American Society for Testing and Materials methods. The Balanus on the test panels grew to 1-20 mm and showed different growth patterns depending on when the panels were first immersed.


Subject(s)
Biofouling , Thoracica , Animals , Ecosystem , Republic of Korea
SELECTION OF CITATIONS
SEARCH DETAIL