Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cephalalgia ; 43(10): 3331024231206781, 2023 10.
Article in English | MEDLINE | ID: mdl-37851663

ABSTRACT

AIM: This study aimed to investigate the extent of autonomic nervous system dysfunction in patients with chronic migraine using heart rate variability analysis. In addition, we explored the potential association between heart rate variability and treatment outcomes in patients receiving preventive treatment. METHODS: In this cross-sectional and prospective study, we compared heart rate variability profiles in 81 preventive-naïve chronic migraine patients and 58 healthy controls. In addition, treatment responses of patients, who received a 12-week treatment with flunarizine, were assessed in relation to baseline heart rate variability. RESULTS: We observed that chronic migraine patients had a reduced heart rate variability, signifying autonomic dysfunction in comparison to healthy controls. Furthermore, patients presenting normal heart rate variability, characterized by a standard deviation exceeding 30 milliseconds in normal-to-normal RR intervals, experienced a superior response to flunarizine treatment. This improvement was exemplified by a significantly larger reduction in monthly headache days for patients with higher heart rate variability compared to those with lower heart rate variability: -9.7 (5.9) vs. -6.2 (6.0) days (p = .026). CONCLUSIONS: Autonomic dysfunction occurs in chronic migraine as evaluated by heart rate variability. A preserved function is associated with a better treatment outcome to flunarizine.Trial registration: Neurologic Signatures of Chronic Pain Disorders, NCT02747940. Registered 22 April 2016, https://clinicaltrials.gov/ct2/show/NCT02747940.


Subject(s)
Flunarizine , Migraine Disorders , Humans , Cross-Sectional Studies , Heart Rate , Migraine Disorders/prevention & control , Prospective Studies , Treatment Outcome
2.
IEEE J Transl Eng Health Med ; 10: 2100408, 2022.
Article in English | MEDLINE | ID: mdl-35492507

ABSTRACT

Motor imagery-based brain-computer interface (MI-BCI) currently represents a new trend in rehabilitation. However, individual differences in the responsive frequency bands and a poor understanding of the communication between the ipsilesional motor areas and other regions limit the use of MI-BCI therapy. Objective: Bimanual training has recently attracted attention as it achieves better outcomes as compared to repetitive one-handed training. This study compared the effects of three MI tasks with different visual feedback. Methods: Fourteen healthy subjects performed single hand motor imagery tasks while watching single static hand (traditional MI), single hand with rotation movement (rmMI), and bimanual coordination with a hand pedal exerciser (bcMI). Functional connectivity is estimated by Transfer Entropy (TE) analysis for brain information flow. Results: Brain connectivity of conducting three MI tasks showed that the bcMI demonstrated increased communications from the parietal to the bilateral prefrontal areas and increased contralateral connections between motor-related zones and spatial processing regions. Discussion/Conclusion: The results revealed bimanual coordination operation events increased spatial information and motor planning under the motor imagery task. And the proposed bimanual coordination MI-BCI (bcMI-BCI) can also achieve the effect of traditional motor imagery tasks and promotes more effective connections with different brain regions to better integrate motor-cortex functions for aiding the development of more effective MI-BCI therapy. Clinical and Translational Impact Statement The proposed bcMI-BCI provides more effective connections with different brain areas and integrates motor-cortex functions to promote motor imagery rehabilitation for patients' impairment.


Subject(s)
Brain-Computer Interfaces , Motor Cortex , Brain , Humans , Imagery, Psychotherapy/methods , Movement
3.
Commun Biol ; 5(1): 230, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35288641

ABSTRACT

Social hierarchy is associated with various phenotypes. Although memory is known to be important for hierarchy formation, the difference in memory abilities between dominant and subordinate individuals remains unclear. In this study, we examined memory performance in mice with different social ranks and found better memory abilities in dominant mice, along with greater long-term potentiation and higher memory-related gene expression in the hippocampus. Daily injection of memory-improving drugs could also enhance dominance. To validate this correlation across species, through inventory, behavioral and event-related potential studies, we identified better memory abilities in preschool children with higher social dominance. Better memory potentially helped children process dominance facial cues and learn social strategies to acquire higher positions. Our study shows a remarkable similarity between humans and mice in the association between memory and social hierarchy and provides valuable insight into social interactions in young animals, with potential implications for preschool education.


Subject(s)
Hierarchy, Social , Social Dominance , Animals , Child, Preschool , Hippocampus , Humans , Memory , Mice
4.
Front Neurosci ; 15: 621365, 2021.
Article in English | MEDLINE | ID: mdl-33679304

ABSTRACT

Many studies have reported that exercise can influence cognitive performance. But advancing our understanding of the interrelations between psychology and physiology in sports neuroscience requires the study of real-time brain dynamics during exercise in the field. Electroencephalography (EEG) is one of the most powerful brain imaging technologies. However, the limited portability and long preparation time of traditional wet-sensor systems largely limits their use to laboratory settings. Wireless dry-sensor systems are emerging with much greater potential for practical application in sports. Hence, in this paper, we use the BR8 wireless dry-sensor EEG system to measure P300 brain dynamics while cycling at various intensities. The preparation time was mostly less than 2 min as BR8 system's dry sensors were able to attain the required skin-sensor interface impedance, enabling its operation without any skin preparation or application of conductive gel. Ten participants performed four sessions of a 3 min rapid serial visual presentation (RSVP) task while resting and while cycling. These four sessions were pre-CE (RSVP only), low-CE (RSVP in 40-50% of max heart rate), vigorous-CE (RSVP in 71-85% of max heart rate) and post-CE (RSVP only). The recorded brain signals demonstrate that the P300 amplitudes, observed at the Pz channel, for the target and non-target responses were significantly different in all four sessions. The results also show decreased reaction times to the visual attention task during vigorous exercise, enriching our understanding of the ways in which exercise can enhance cognitive performance. Even though only a single channel was evaluated in this study, the quality and reliability of the measurement using these dry sensor-based EEG systems is clearly demonstrated by our results. Further, the smooth implementation of the experiment with a dry system and the success of the data analysis demonstrate that wireless dry EEG devices can open avenues for real-time measurement of cognitive functions in athletes outside the laboratory.

5.
Front Psychol ; 11: 1580, 2020.
Article in English | MEDLINE | ID: mdl-32765363

ABSTRACT

Previous studies have shown equivocal results about whether atypical or unusual events, compared with typical ones, facilitate or inhibit memory. We suspect that the indefinite findings could be partly due to the recall task used in these studies, as the participants might have used inference instead of recall in their responses. In the present study, we tested the recognition memory for real (Experiment 1) and fabricated (Experiment 2) advertisements, which could be congruent or incongruent with gender stereotypes. In congruent advertisements, a female endorser presented a traditionally considered feminine product or a male endorser presented a traditionally considered masculine product, whereas the gender-product type matching reversed in incongruent advertisements. The results of both behavioral experiments revealed that the participants' memory performance for stereotype-incongruent advertisements was higher than for congruent ones. In the event-related potential (ERP) recordings in Experiment 3, larger positive amplitudes were found for stereotype-incongruent advertisements than for congruent advertisements on the left parietal sites, suggesting a deeper encoding process for stereotype-incongruent information than for stereotype-congruent information.

6.
Int J Neural Syst ; 30(1): 1950018, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31366249

ABSTRACT

Fatigue is one problem with driving as it can lead to difficulties with sustaining attention, behavioral lapses, and a tendency to ignore vital information or operations. In this research, we explore multimodal physiological phenomena in response to driving fatigue through simultaneous functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) recordings with the aim of investigating the relationships between hemodynamic and electrical features and driving performance. Sixteen subjects participated in an event-related lane-deviation driving task while measuring their brain dynamics through fNIRS and EEGs. Three performance groups, classified as Optimal, Suboptimal, and Poor, were defined for comparison. From our analysis, we find that tonic variations occur before a deviation, and phasic variations occur afterward. The tonic results show an increased concentration of oxygenated hemoglobin (HbO2) and power changes in the EEG theta, alpha, and beta bands. Both dynamics are significantly correlated with deteriorated driving performance. The phasic EEG results demonstrate event-related desynchronization associated with the onset of steering vehicle in all power bands. The concentration of phasic HbO2 decreased as performance worsened. Further, the negative correlations between tonic EEG delta and alpha power and HbO2 oscillations suggest that activations in HbO2 are related to mental fatigue. In summary, combined hemodynamic and electrodynamic activities can provide complete knowledge of the brain's responses as evidence of state changes during fatigue driving.


Subject(s)
Automobile Driving , Brain Waves/physiology , Cortical Synchronization/physiology , Evoked Potentials/physiology , Fatigue/physiopathology , Functional Neuroimaging , Hemoglobins/metabolism , Neurovascular Coupling/physiology , Oxygen/metabolism , Psychomotor Performance/physiology , Spectroscopy, Near-Infrared , Adult , Fatigue/diagnostic imaging , Humans , Male , Young Adult
7.
Micromachines (Basel) ; 10(11)2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31731489

ABSTRACT

A brain-computer interface (BCI) is a type of interface/communication system that can help users interact with their environments. Electroencephalography (EEG) has become the most common application of BCIs and provides a way for disabled individuals to communicate. While wet sensors are the most commonly used sensors for traditional EEG measurements, they require considerable preparation time, including the time needed to prepare the skin and to use the conductive gel. Additionally, the conductive gel dries over time, leading to degraded performance. Furthermore, requiring patients to wear wet sensors to record EEG signals is considered highly inconvenient. Here, we report a wireless 8-channel digital active-circuit EEG signal acquisition system that uses dry sensors. Active-circuit systems for EEG measurement allow people to engage in daily life while using these systems, and the advantages of these systems can be further improved by utilizing dry sensors. Moreover, the use of dry sensors can help both disabled and healthy people enjoy the convenience of BCIs in daily life. To verify the reliability of the proposed system, we designed three experiments in which we evaluated eye blinking and teeth gritting, measured alpha waves, and recorded event-related potentials (ERPs) to compare our developed system with a standard Neuroscan EEG system.

8.
Brain Behav ; 9(12): e01379, 2019 12.
Article in English | MEDLINE | ID: mdl-31568699

ABSTRACT

BACKGROUND: In the past decade, fatigue has been regarded as one of the main factors impairing task performance and increasing behavioral lapses during driving, even leading to fatal car crashes. Although previous studies have explored the impact of acute fatigue through electroencephalography (EEG) signals, it is still unclear how different fatigue levels affect brain-behavior relationships. METHODS: A longitudinal study was performed to investigate the brain dynamics and behavioral changes in individuals under different fatigue levels by a sustained attention task. This study used questionnaires in combination with actigraphy, a noninvasive means of monitoring human physiological activity cycles, to conduct longitudinal assessment and tracking of the objective and subjective fatigue levels of recruited participants. In this study, degrees of effectiveness score (fatigue rating) are divided into three levels (normal, reduced, and high risk) by the SAFTE fatigue model. RESULTS: Results showed that those objective and subjective indicators were negatively correlated to behavioral performance. In addition, increased response times were accompanied by increased alpha and theta power in most brain regions, especially the posterior regions. In particular, the theta and alpha power dramatically increased in the high-fatigue (high-risk) group. Additionally, the alpha power of the occipital regions showed an inverted U-shaped change. CONCLUSION: Our results help to explain the inconsistent findings among existing studies, which considered the effects of only acute fatigue on driving performance while ignoring different levels of resident fatigue, and potentially lead to practical and precise biomathematical models to better predict the performance of human operators.


Subject(s)
Automobile Driving , Brain/physiology , Fatigue/physiopathology , Attention/physiology , Brain/radiation effects , Electroencephalography/methods , Female , Humans , Longitudinal Studies , Male , Monitoring, Physiologic , Reaction Time/physiology , Task Performance and Analysis , Time Factors , Young Adult
9.
Front Hum Neurosci ; 12: 418, 2018.
Article in English | MEDLINE | ID: mdl-30483080

ABSTRACT

The analysis of neurophysiological changes during driving can clarify the mechanisms of fatigue, considered an important cause of vehicle accidents. The fluctuations in alertness can be investigated as changes in the brain network connections, reflected in the direction and magnitude of the information transferred. Those changes are induced not only by the time on task but also by the quality of sleep. In an unprecedented 5-month longitudinal study, daily sampling actigraphy and EEG data were collected during a sustained-attention driving task within a near-real-world environment. Using a performance index associated with the subjects' reaction times and a predictive score related to the sleep quality, we identify fatigue levels in drivers and investigate the shifts in their effective connectivity in different frequency bands, through the analysis of the dynamical coupling between brain areas. Study results support the hypothesis that combining EEG, behavioral and actigraphy data can reveal new features of the decline in alertness. In addition, the use of directed measures such as the Convergent Cross Mapping can contribute to the development of fatigue countermeasure devices.

10.
Front Neurosci ; 12: 181, 2018.
Article in English | MEDLINE | ID: mdl-29636658

ABSTRACT

Fatigue is likely to be gradually cumulated in a prolonged and attention-demanding task that may adversely affect task performance. To address the brain dynamics during a driving task, this study recruited 16 subjects to participate in an event-related lane-departure driving experiment. Each subject was instructed to maintain attention and task performance throughout an hour-long driving experiment. The subjects' brain electrodynamics and hemodynamics were simultaneously recorded via 32-channel electroencephalography (EEG) and 8-source/16-detector functional near-infrared spectroscopy (fNIRS). The behavior performance demonstrated that all subjects were able to promptly respond to lane-deviation events, even if the sign of fatigue arose in the brain, which suggests that the subjects were fighting fatigue during the driving experiment. The EEG event-related analysis showed strengthening alpha suppression in the occipital cortex, a common brain region of fatigue. Furthermore, we noted increasing oxygenated hemoglobin (HbO) of the brain to fight driving fatigue in the frontal cortex, primary motor cortex, parieto-occipital cortex and supplementary motor area. In conclusion, the increasing neural activity and cortical activations were aimed at maintaining driving performance when fatigue emerged. The electrodynamic and hemodynamic signatures of fatigue fighting contribute to our understanding of the brain dynamics of driving fatigue and address driving safety issues through the maintenance of attention and behavioral performance.

11.
Int J Neural Syst ; 26(4): 1650018, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27121994

ABSTRACT

Research has indicated that fatigue is a critical factor in cognitive lapses because it negatively affects an individual's internal state, which is then manifested physiologically. This study explores neurophysiological changes, measured by electroencephalogram (EEG), due to fatigue. This study further demonstrates the feasibility of an online closed-loop EEG-based fatigue detection and mitigation system that detects physiological change and can thereby prevent fatigue-related cognitive lapses. More importantly, this work compares the efficacy of fatigue detection and mitigation between the EEG-based and a nonEEG-based random method. Twelve healthy subjects participated in a sustained-attention driving experiment. Each participant's EEG signal was monitored continuously and a warning was delivered in real-time to participants once the EEG signature of fatigue was detected. Study results indicate suppression of the alpha- and theta-power of an occipital component and improved behavioral performance following a warning signal; these findings are in line with those in previous studies. However, study results also showed reduced warning efficacy (i.e. increased response times (RTs) to lane deviations) accompanied by increased alpha-power due to the fluctuation of warnings over time. Furthermore, a comparison of EEG-based and nonEEG-based random approaches clearly demonstrated the necessity of adaptive fatigue-mitigation systems, based on a subject's cognitive level, to deliver warnings. Analytical results clearly demonstrate and validate the efficacy of this online closed-loop EEG-based fatigue detection and mitigation mechanism to identify cognitive lapses that may lead to catastrophic incidents in countless operational environments.


Subject(s)
Attention/physiology , Brain/physiopathology , Electroencephalography/methods , Fatigue/diagnosis , Fatigue/physiopathology , Feedback, Psychological , Acoustic Stimulation/methods , Adult , Alpha Rhythm/physiology , Automobile Driving/psychology , Cognition/physiology , Fatigue/therapy , Feasibility Studies , Feedback, Psychological/physiology , Female , Humans , Male , Reaction Time , Time Factors , User-Computer Interface , Young Adult
12.
Sci Rep ; 6: 21353, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26882993

ABSTRACT

Fluctuations in attention behind the wheel poses a significant risk for driver safety. During transient periods of inattention, drivers may shift their attention towards internally-directed thoughts or feelings at the expense of staying focused on the road. This study examined whether increasing task difficulty by manipulating involved sensory modalities as the driver detected the lane-departure in a simulated driving task would promote a shift of brain activity between different modes of processing, reflected by brain network dynamics on electroencephalographic sources. Results showed that depriving the driver of salient sensory information imposes a relatively more perceptually-demanding task, leading to a stronger activation in the task-positive network. When the vehicle motion feedback is available, the drivers may rely on vehicle motion to perceive the perturbations, which frees attentional capacity and tends to activate the default mode network. Such brain network dynamics could have major implications for understanding fluctuations in driver attention and designing advance driver assistance systems.


Subject(s)
Attention , Automobile Driving/psychology , Brain/physiology , Brain Mapping , Electroencephalography , Humans , Magnetic Resonance Imaging , Psychomotor Performance
13.
IEEE Trans Neural Syst Rehabil Eng ; 24(7): 806-13, 2016 07.
Article in English | MEDLINE | ID: mdl-26780814

ABSTRACT

Potable electroencephalography (EEG) devices have become critical for important research. They have various applications, such as in brain-computer interfaces (BCI). Numerous recent investigations have focused on the development of dry sensors, but few concern the simultaneous attachment of high-density dry sensors to different regions of the scalp to receive qualified EEG signals from hairy sites. An inflatable and wearable wireless 32-channel EEG device was designed, prototyped, and experimentally validated for making EEG signal measurements; it incorporates spring-loaded dry sensors and a novel gasbag design to solve the problem of interference by hair. The cap is ventilated and incorporates a circuit board and battery with a high-tolerance wireless (Bluetooth) protocol and low power consumption characteristics. The proposed system provides a 500/250 Hz sampling rate, and 24 bit EEG data to meet the BCI system data requirement. Experimental results prove that the proposed EEG system is effective in measuring audio event-related potential, measuring visual event-related potential, and rapid serial visual presentation. Results of this work demonstrate that the proposed EEG cap system performs well in making EEG measurements and is feasible for practical applications.


Subject(s)
Computer Communication Networks/instrumentation , Electric Power Supplies , Electrodes , Electroencephalography/instrumentation , Monitoring, Ambulatory/instrumentation , Wireless Technology/instrumentation , Amplifiers, Electronic , Analog-Digital Conversion , Equipment Design , Equipment Failure Analysis , Feasibility Studies , Humans , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted/instrumentation
14.
Int J Neural Syst ; 26(2): 1650007, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26790485

ABSTRACT

Motion sickness (MS) is a common experience of travelers. To provide insights into brain dynamics associated with MS, this study recruited 19 subjects to participate in an electroencephalogram (EEG) experiment in a virtual-reality driving environment. When riding on consecutive winding roads, subjects experienced postural instability and sensory conflict between visual and vestibular stimuli. Meanwhile, subjects rated their level of MS on a six-point scale. Independent component analysis (ICA) was used to separate the filtered EEG signals into maximally temporally independent components (ICs). Then, reduced logarithmic spectra of ICs of interest, using principal component analysis, were decomposed by ICA again to find spectrally fixed and temporally independent modulators (IMs). Results demonstrated that a higher degree of MS accompanied increased activation of alpha (r = 0.421) and gamma (r =0.478) IMs across remote-independent brain processes, covering motor, parietal and occipital areas. This co-modulatory spectral change in alpha and gamma bands revealed the neurophysiological demand to regulate conflicts among multi-modal sensory systems during MS.


Subject(s)
Alpha Rhythm/physiology , Automobile Driving/psychology , Computer Simulation , Gamma Rhythm/physiology , Motion Sickness/physiopathology , Motion Sickness/psychology , Electroencephalography/methods , Female , Humans , Male , Young Adult
15.
Article in English | MEDLINE | ID: mdl-26737816

ABSTRACT

The improvement of brain imaging technique brings about an opportunity for developing and investigating brain-computer interface (BCI) which is a way to interact with computer and environment. The measured brain activities usually constitute the signals of interest and noises. Applying the portable device and removing noise are the benefits to real-world BCI. In this study, one portable electroencephalogram (EEG) system non-invasively acquired brain dynamics through wireless transmission while six subjects participated in the rapid serial visual presentation (RSVP) paradigm. The event-related potential (ERP) was traditionally estimated by ensemble averaging (EA) to increase the signal-to-noise ratio. One adaptive filter of data-reusing radial basis function network (DR-RBFN) was also utilized as the estimator. The results showed that this portable EEG system stably acquired brain activities. Furthermore, the task-related potentials could be clearly explored from the limited samples of EEG data through DR-RBFN. According to the artifact-free data from the portable device, this study demonstrated the potential to move the BCI from laboratory research to real-life application in the near future.


Subject(s)
Algorithms , Electroencephalography/methods , Signal Processing, Computer-Assisted , Brain-Computer Interfaces , Evoked Potentials , Humans
SELECTION OF CITATIONS
SEARCH DETAIL