Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Transpl Int ; 37: 12963, 2024.
Article in English | MEDLINE | ID: mdl-38868358

ABSTRACT

Cytomegalovirus (CMV) infection detrimentally influences graft survival in kidney transplant recipients, with the risk primarily determined by recipient and donor serostatus. However, recipient CD8+ T cells play a crucial role in CMV control. The optimal preventive strategy (prophylaxis vs. pre-emptive treatment), particularly for seropositive (intermediate risk) recipients, remains uncertain. We investigated CD8+ T cell subpopulation dynamics and CMV occurrence (DNAemia ≥ 100 IU/mL) in 65 kidney transplant recipients, collecting peripheral blood mononuclear cells before (T1) and 1 year after transplantation (T2). Comparing the two timepoints, we found an increase in granulocyte, monocyte and CD3+CD8+ T cells numbers, while FoxP3+CD25+, LAG-3+ and PD-1+ frequencies were reduced at T2. CMV DNAemia occurred in 33 recipients (55.8%) during the first year. Intermediate risk patients were disproportionally affected by posttransplant CMV (N = 29/45, 64.4%). Intermediate risk recipients developing CMV after transplantation exhibited lower leukocyte, monocyte, and granulocyte counts and higher FoxP3+CD25+ frequencies in CD3+CD8+ T cells pre-transplantation compared to patients staying CMV negative. Pre-transplant FoxP3+CD25+ in CD3+CD8+ T cells had the best discriminatory potential for CMV infection prediction within the first year after transplantation (AUC: 0.746). The FoxP3+CD25+ CD3+CD8+ T cell subset may aid in selecting intermediate risk kidney transplant recipients for CMV prophylaxis.


Subject(s)
CD8-Positive T-Lymphocytes , Cytomegalovirus Infections , Forkhead Transcription Factors , Interleukin-2 Receptor alpha Subunit , Kidney Transplantation , Humans , Kidney Transplantation/adverse effects , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/prevention & control , Female , Male , CD8-Positive T-Lymphocytes/immunology , Middle Aged , Forkhead Transcription Factors/metabolism , Adult , Interleukin-2 Receptor alpha Subunit/metabolism , Aged , CD3 Complex/metabolism , Cytomegalovirus/immunology , Risk Factors , Transplant Recipients , Graft Survival/immunology
2.
bioRxiv ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38370682

ABSTRACT

Genome-wide association studies (GWAS) have identified over 800 loci associated with kidney function, yet the specific genes, variants, and pathways involved remain elusive. By integrating kidney function GWAS, human kidney expression and methylation quantitative trait analyses, we identified Ten-Eleven Translocation (TET) DNA demethylase 2: TET2 as a novel kidney disease risk gene. Utilizing single-cell chromatin accessibility and CRISPR-based genome editing, we highlight GWAS variants that influence TET2 expression in kidney proximal tubule cells. Experiments using kidney-tubule-specific Tet2 knockout mice indicated its protective role in cisplatin-induced acute kidney injury, as well as chronic kidney disease and fibrosis, induced by unilateral ureteral obstruction or adenine diet. Single-cell gene profiling of kidneys from Tet2 knockout mice and TET2- knock-down tubule cells revealed the altered expression of DNA damage repair and chromosome segregation genes, notably including INO80 , another kidney function GWAS target gene itself. Remarkably both TET2- null and INO80- null cells exhibited an increased accumulation of micronuclei after injury, leading to the activation of cytosolic nucleotide sensor cGAS-STING. Genetic deletion of cGAS or STING in kidney tubules or pharmacological inhibition of STING protected TET2 null mice from disease development. In conclusion, our findings highlight TET2 and INO80 as key genes in the pathogenesis of kidney diseases, indicating the importance of DNA damage repair mechanisms.

3.
J Clin Invest ; 134(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37906287

ABSTRACT

Mineralocorticoid excess commonly leads to hypertension (HTN) and kidney disease. In our study, we used single-cell expression and chromatin accessibility tools to characterize the mineralocorticoid target genes and cell types. We demonstrated that mineralocorticoid effects were established through open chromatin and target gene expression, primarily in principal and connecting tubule cells and, to a lesser extent, in segments of the distal convoluted tubule cells. We examined the kidney-protective effects of steroidal and nonsteroidal mineralocorticoid antagonists (MRAs), as well as of amiloride, an epithelial sodium channel inhibitor, in a rat model of deoxycorticosterone acetate, unilateral nephrectomy, and high-salt consumption-induced HTN and cardiorenal damage. All antihypertensive therapies protected against cardiorenal damage. However, finerenone was particularly effective in reducing albuminuria and improving gene expression changes in podocytes and proximal tubule cells, even with an equivalent reduction in blood pressure. We noted a strong correlation between the accumulation of injured/profibrotic tubule cells expressing secreted posphoprotein 1 (Spp1), Il34, and platelet-derived growth factor subunit b (Pdgfb) and the degree of fibrosis in rat kidneys. This gene signature also showed a potential for classifying human kidney samples. Our multiomics approach provides fresh insights into the possible mechanisms underlying HTN-associated kidney disease, the target cell types, the protective effects of steroidal and nonsteroidal MRAs, and amiloride.


Subject(s)
Hypertension , Kidney Diseases , Rats , Humans , Animals , Mineralocorticoid Receptor Antagonists/pharmacology , Chromatin/genetics , Amiloride/pharmacology , Mineralocorticoids/pharmacology , Kidney , Kidney Diseases/genetics , Gene Expression Profiling
4.
Nat Med ; 29(5): 1064-1065, 2023 05.
Article in English | MEDLINE | ID: mdl-37130964

Subject(s)
Erythropoietin
5.
Front Med (Lausanne) ; 9: 818882, 2022.
Article in English | MEDLINE | ID: mdl-35187002

ABSTRACT

BACKGROUND: The COVID-19 pandemic has major implications on kidney transplant recipients (KTRs) since they show increased mortality due to impaired immune responses to SARS-CoV-2 infection and a reduced efficacy of SARS-CoV-2 vaccination. Surprisingly, dialysis patients have shown superior seroconversion rates after vaccination compared to KTRs. Therefore, we investigated peripheral blood B cell (BC) composition before and after kidney transplantation (KT) and aimed to screen the BC compartment to explain impaired antibody generation. METHODS: A total of 105 patients were recruited, and multicolor flow cytometric phenotyping of peripheral venous blood BC subpopulations was performed before and 1 year after KT. Complete follow-up was available for 71 individuals. Anti-SARS-CoV-2 antibodies were collected retrospectively and were available for 40 subjects, who had received two doses of an mRNA-based vaccine (BNT162b2 or mRNA-1273). RESULTS: Overall, relative BC frequencies within lymphocytes decreased, and their absolute counts trended in the same direction 1 year after KT as compared to CKD G5 patients. Frequencies and absolute numbers of naïve BCs remained stable. Frequencies of double negative BCs, a heterogeneous subpopulation of antigen experienced BCs lacking CD27 expression, were increased after KT, yet their absolute counts were similar at both time points. Transitional BCs (TrBCs) and plasmablasts were significantly reduced after KT in absolute and relative terms. Memory BCs were affected differently since class-switched and IgM-only subsets decreased after KT, but unswitched and IgD-only memory BCs remained unchanged. CD86+ and CD5+ expression on BCs was downregulated after KT. Correlational analysis revealed that TrBCs were the only subset to correlate with titer levels after SARS-CoV-2 vaccination. Responders showed higher TrBCs, both absolute and relative, than non-responders. CONCLUSION: Together, after 1 year, KTRs showed persistent and profound compositional changes within the BC compartment. Low TrBCs, 1 year after KT, may account for the low serological response to SARS-CoV-2 vaccination in KTRs compared to dialysis patients. Our findings need confirmation in further studies as they may guide vaccination strategies.

6.
Kidney Int ; 100(2): 336-348, 2021 08.
Article in English | MEDLINE | ID: mdl-33785369

ABSTRACT

Co-stimulation is a prerequisite for pathogenic activity in T cell-mediated diseases and has been demonstrated to achieve tolerance in organ-specific autoimmunity as a therapeutic target. Here, we evaluated the involvement of the tumor necrosis factor family members CD30 and OX40 in immune-complex mediated kidney disease. In vitro stimulation and proliferation studies were performed with CD4+ cells from wild type and CD30/OX40 double knock-out (CD30OX40-/-) mice. In vivo studies were performed by induction of nephrotoxic serum nephritis in wild type, CD30OX40- /- , CD30-/-, OX40-/-, reconstituted Rag1-/- and C57Bl/6J mice treated with αCD30L αOX40L antibodies. CD30, OX40 and their ligands were upregulated on various leukocytes in nephrotoxic serum nephritis. CD30OX40-/- mice, but not CD30-/- or OX40-/- mice were protected from nephrotoxic serum nephritis. Similar protection was found in Rag1-/- mice injected with CD4+ T cells from CD30OX40-/- mice compared to Rag1-/- mice injected with CD4+ T cells from wild type mice. Furthermore, CD4+ T cells deficient in CD30OX40-/- displayed decreased expression of CCR6 in vivo. CD30OX40-/- cells were fully capable of differentiating into disease mediating T helper cell subsets, but showed significantly decreased levels of proliferation in vivo and in vitro compared to wild type cells. Blocking antibodies against CD30L and OX40L ameliorated nephrotoxic serum nephritis without affecting pan-effector or memory T cell populations. Thus, our results indicate disease promotion via CD30 and OX40 signaling due to facilitation of exaggerated T cell proliferation and migration of T helper 17 cells in nephrotoxic serum nephritis. Hence, co-stimulation blockade targeting the CD30 and OX40 signaling pathways may provide a novel therapeutic strategy in autoimmune kidney disease.


Subject(s)
Glomerulonephritis , Receptors, OX40 , Animals , CD4-Positive T-Lymphocytes , Glomerulonephritis/genetics , Ki-1 Antigen , Mice , Mice, Inbred C57BL , Mice, Knockout , Tumor Necrosis Factor-alpha , Tumor Necrosis Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...