Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 226
Filter
1.
JCO Precis Oncol ; 8: e2400106, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39013133

ABSTRACT

PURPOSE: The autosomal dominant cancer predisposition disorders hereditary breast and ovarian cancer (HBOC) and Lynch syndrome (LS) are genetic conditions for which early identification and intervention have a positive effect on the individual and public health. The goals of this study were to determine whether germline genetic screening using exome sequencing could be used to efficiently identify carriers of HBOC and LS. METHODS: Participants were recruited from three geographically and racially diverse sites in the United States (Rochester, MN; Phoenix, AZ; Jacksonville, FL). Participants underwent Exome+ sequencing (Helix Inc, San Mateo, CA) and return of results for specific genetic findings: HBOC (BRCA1 and BRCA1) and LS (MLH1, MSH2, MSH6, PMS2, and EPCAM). Chart review was performed to collect demographics and personal and family cancer history. RESULTS: To date, 44,306 participants have enrolled in Tapestry. Annotation and interpretation of all variants in genes for HBOC and LS resulted in the identification of 550 carriers (prevalence, 1.24%), which included 387 with HBOC (27.2% BRCA1, 42.8% BRCA2) and 163 with LS (12.3% MSH6, 8.8% PMS2, 4.5% MLH1, 3.8% MSH2, and 0.2% EPCAM). More than half of these participants (52.1%) were newly diagnosed carriers with HBOC and LS. In all, 39.2% of HBOC/LS carriers did not satisfy National Comprehensive Cancer Network (NCCN) criteria for genetic evaluation. NCCN criteria were less commonly met in underrepresented minority populations versus self-reported White race (51.5% v 37.5%, P = .028). CONCLUSION: Our results emphasize the need for wider utilization of germline genetic sequencing for enhanced screening and detection of individuals who have LS and HBOC cancer predisposition syndromes.


Subject(s)
Genetic Predisposition to Disease , Humans , Female , Middle Aged , Adult , Male , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Exome Sequencing , Practice Guidelines as Topic , Aged , Genetic Testing/methods , Young Adult , Hereditary Breast and Ovarian Cancer Syndrome/genetics , Hereditary Breast and Ovarian Cancer Syndrome/diagnosis , Heterozygote
2.
Brain ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884572

ABSTRACT

Alpha-tubulin 4A encoding gene (TUBA4A) has been associated with familial amyotrophic lateral sclerosis (fALS) and fronto-temporal dementia (FTD), based on identification of likely pathogenic variants in patients from distinct ALS and FTD cohorts. By screening a multicentric French cohort of 448 unrelated probands presenting with cerebellar ataxia, we identified ultra-rare TUBA4A missense variants, all being absent from public databases and predicted pathogenic by multiple in-silico tools. In addition, gene burden analyses in the 100,000 genomes project (100KGP) showed enrichment of TUBA4A rare variants in the inherited ataxia group compared to controls (OR: 57.0847 [10.2- 576.7]; p = 4.02 x10-07). Altogether, we report 12 patients presenting with spasticity and/or cerebellar ataxia and harboring a predicted pathogenic TUBA4A missense mutation, including 5 confirmed de novo cases and a mutation previously reported in a large family presenting with spastic ataxia. Cultured fibroblasts from 3 patients harboring distinct TUBA4A missense showed significant alterations in microtubule organisation and dynamics, providing insight of TUBA4A variants pathogenicity. Our data confirm the identification of a hereditary spastic ataxia disease gene with variable age of onset, expanding the clinical spectrum of TUBA4A associated phenotypes.

3.
Brain ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38848546

ABSTRACT

Intracellular trafficking involves an intricate machinery of motor complexes including the dynein complex to shuttle cargo for autophagolysosomal degradation. Deficiency in dynein axonemal chains as well as cytoplasmic light and intermediate chains have been linked with ciliary dyskinesia and skeletal dysplasia. The cytoplasmic dynein 1 heavy chain protein (DYNC1H1) serves as a core complex for retrograde trafficking in neuronal axons. Dominant pathogenic variants in DYNC1H1 have been previously implicated in peripheral neuromuscular disorders (NMD) and neurodevelopmental disorders (NDD). As heavy-chain dynein is ubiquitously expressed, the apparent selectivity of heavy-chain dyneinopathy for motor neuronal phenotypes remains currently unaccounted for. Here, we aimed to evaluate the full DYNC1H1-related clinical, molecular and imaging spectrum, including multisystem features and novel phenotypes presenting throughout life. We identified 47 cases from 43 families with pathogenic heterozygous variants in DYNC1H1 (aged 0-59 years) and collected phenotypic data via a comprehensive standardized survey and clinical follow-up appointments. Most patients presented with divergent and previously unrecognized neurological and multisystem features, leading to significant delays in genetic testing and establishing the correct diagnosis. Neurological phenotypes include novel autonomic features, previously rarely described behavioral disorders, movement disorders, and periventricular lesions. Sensory neuropathy was identified in nine patients (median age of onset 10.6 years), of which five were only diagnosed after the second decade of life, and three had a progressive age-dependent sensory neuropathy. Novel multisystem features included primary immunodeficiency, bilateral sensorineural hearing loss, organ anomalies, and skeletal manifestations, resembling the phenotypic spectrum of other dyneinopathies. We also identified an age-dependent biphasic disease course with developmental regression in the first decade and, following a period of stability, neurodegenerative progression after the second decade of life. Of note, we observed several cases in whom neurodegeneration appeared to be prompted by intercurrent systemic infections with double-stranded DNA viruses (Herpesviridae) or single-stranded RNA viruses (Ross-River fever, SARS-CoV-2). Moreover, the disease course appeared to be exacerbated by viral infections regardless of age and/or severity of NDD manifestations, indicating a role of dynein in anti-viral immunity and neuronal health. In summary, our findings expand the clinical, imaging, and molecular spectrum of pathogenic DYNC1H1 variants beyond motor neuropathy disorders and suggest a life-long continuum and age-related progression due to deficient intracellular trafficking. This study will facilitate early diagnosis and improve counselling and health surveillance of affected patients.

5.
Eur J Hum Genet ; 32(7): 879-883, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38702431

ABSTRACT

Numerous large scale genomic studies have uncovered rare but recurrent pathogenetic variants in a significant number of genes encoding epigenetic machinery in cases with neurodevelopmental disorders (NDD) especially autism spectrum disorder (ASD). These findings provide strong support for the functional importance of epigenetic regulators in neurodevelopment. After the clinical genomics evaluation of the patients using exome sequencing, we have identified, three novel protein-truncating variants (PTVs) in the MSL2 gene (OMIM: 614802) which encodes a chromatin modifying enzyme. MSL2 modifies chromatin through both mono-ubiquitination of histone 2B on lysine 34 (K34) and acetylation of histone H4 on lysine 16 (K16). We reported first time the detailed clinical features associated with 3 MSL2 PTVs. There are 15 PTVs (13 de novo) reported from the large genomics studies (12 cases) or ClinVar (3 cases) of NDD, ASD, and developmental disorders (DD) but the specific clinical features for these cases are not described. Taken together, our descriptions of dysmorphic face and other features support the causal role of MSL2 in a likely syndromic neurodevelopmental disorder and add MSL2 to a growing list of epigenetic genes implicated in ASD.


Subject(s)
Autism Spectrum Disorder , Child , Child, Preschool , Female , Humans , Male , Autism Spectrum Disorder/genetics , Chromatin/genetics , Chromatin/metabolism , Mutation , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Syndrome
6.
Orphanet J Rare Dis ; 19(1): 216, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790019

ABSTRACT

BACKGROUND: Though next-generation sequencing (NGS) tests like exome sequencing (ES), genome sequencing (GS), and panels derived from exome and genome data (EGBP) are effective for rare diseases, the ideal diagnostic approach is debated. Limited research has explored reanalyzing raw ES and GS data post-negative EGBP results for diagnostics. RESULTS: We analyzed complete ES/GS raw sequencing data from Mayo Clinic's Program for Rare and Undiagnosed Diseases (PRaUD) patients to assess whether supplementary findings could augment diagnostic yield. ES data from 80 patients (59 adults) and GS data from 20 patients (10 adults), averaging 43 years in age, were analyzed. Most patients had renal (n=44) and auto-inflammatory (n=29) phenotypes. Ninety-six cases had negative findings and in four cases additional genetic variants were found, including a variant related to a recently described disease (RRAGD-related hypomagnesemia), a variant missed due to discordant inheritance pattern (COL4A3), a variant with high allelic frequency (NPHS2) in the general population, and a variant associated with an initially untargeted phenotype (HNF1A). CONCLUSION: ES and GS show diagnostic yields comparable to EGBP for single-system diseases. However, EGBP's limitations in detecting new disease-associated genes underscore the necessity for periodic updates.


Subject(s)
High-Throughput Nucleotide Sequencing , Humans , Adult , Female , Male , Middle Aged , High-Throughput Nucleotide Sequencing/methods , Exome Sequencing/methods , Exome/genetics , Young Adult , Rare Diseases/genetics , Rare Diseases/diagnosis , Aged , Adolescent , Whole Genome Sequencing/methods
7.
bioRxiv ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38585820

ABSTRACT

The OmicsFootPrint framework addresses the need for advanced multi-omics data analysis methodologies by transforming data into intuitive two-dimensional circular images and facilitating the interpretation of complex diseases. Utilizing Deep Neural Networks and incorporating the SHapley Additive exPlanations (SHAP) algorithm, the framework enhances model interpretability. Tested with The Cancer Genome Atlas (TCGA) data, OmicsFootPrint effectively classified lung and breast cancer subtypes, achieving high Area Under Curve (AUC) scores - 0.98±0.02 for lung cancer subtype differentiation, 0.83±0.07 for breast cancer PAM50 subtypes, and successfully distinguishe between invasive lobular and ductal carcinomas in breast cancer, showcasing its robustness. It also demonstrated notable performance in predicting drug responses in cancer cell lines, with a median AUC of 0.74, surpassing existing algorithms. Furthermore, its effectiveness persists even with reduced training sample sizes. OmicsFootPrint marks an enhancement in multi-omics research, offering a novel, efficient, and interpretable approach that contributes to a deeper understanding of disease mechanisms.

8.
BMC Genomics ; 25(1): 371, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627676

ABSTRACT

BACKGROUND: X-chromosome inactivation (XCI) is an epigenetic process that occurs during early development in mammalian females by randomly silencing one of two copies of the X chromosome in each cell. The preferential inactivation of either the maternal or paternal copy of the X chromosome in a majority of cells results in a skewed or non-random pattern of X inactivation and is observed in over 25% of adult females. Identifying skewed X inactivation is of clinical significance in patients with suspected rare genetic diseases due to the possibility of biased expression of disease-causing genes present on the active X chromosome. The current clinical test for the detection of skewed XCI relies on the methylation status of the methylation-sensitive restriction enzyme (Hpall) binding site present in proximity of short tandem polymorphic repeats on the androgen receptor (AR) gene. This approach using one locus results in uninformative or inconclusive data for 10-20% of tests. Further, recent studies have shown inconsistency between methylation of the AR locus and the state of inactivation of the X chromosome. Herein, we develop a method for estimating X inactivation status, using exome and transcriptome sequencing data derived from blood in 227 female samples. We built a reference model for evaluation of XCI in 135 females from the GTEx consortium. We tested and validated the model on 11 female individuals with different types of undiagnosed rare genetic disorders who were clinically tested for X-skew using the AR gene assay and compared results to our outlier-based analysis technique. RESULTS: In comparison to the AR clinical test for identification of X inactivation, our method was concordant with the AR method in 9 samples, discordant in 1, and provided a measure of X inactivation in 1 sample with uninformative clinical results. We applied this method on an additional 81 females presenting to the clinic with phenotypes consistent with different hereditary disorders without a known genetic diagnosis. CONCLUSIONS: This study presents the use of transcriptome and exome sequencing data to provide an accurate and complete estimation of X-inactivation and skew status in a cohort of female patients with different types of suspected rare genetic disease.


Subject(s)
Exome , X Chromosome Inactivation , Adult , Humans , Female , Transcriptome , Exome Sequencing , Chromosomes, Human, X/genetics
9.
NPJ Genom Med ; 9(1): 18, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429302

ABSTRACT

CELSR3 codes for a planar cell polarity protein. We describe twelve affected individuals from eleven independent families with bi-allelic variants in CELSR3. Affected individuals presented with an overlapping phenotypic spectrum comprising central nervous system (CNS) anomalies (7/12), combined CNS anomalies and congenital anomalies of the kidneys and urinary tract (CAKUT) (3/12) and CAKUT only (2/12). Computational simulation of the 3D protein structure suggests the position of the identified variants to be implicated in penetrance and phenotype expression. CELSR3 immunolocalization in human embryonic urinary tract and transient suppression and rescue experiments of Celsr3 in fluorescent zebrafish reporter lines further support an embryonic role of CELSR3 in CNS and urinary tract formation.

10.
Hum Genet ; 143(5): 649-666, 2024 May.
Article in English | MEDLINE | ID: mdl-38538918

ABSTRACT

Most rare disease patients (75-50%) undergoing genomic sequencing remain unsolved, often due to lack of information about variants identified. Data review over time can leverage novel information regarding disease-causing variants and genes, increasing this diagnostic yield. However, time and resource constraints have limited reanalysis of genetic data in clinical laboratories setting. We developed RENEW, (REannotation of NEgative WES/WGS) an automated reannotation procedure that uses relevant new information in on-line genomic databases to enable rapid review of genomic findings. We tested RENEW in an unselected cohort of 1066 undiagnosed cases with a broad spectrum of phenotypes from the Mayo Clinic Center for Individualized Medicine using new information in ClinVar, HGMD and OMIM between the date of previous analysis/testing and April of 2022. 5741 variants prioritized by RENEW were rapidly reviewed by variant interpretation specialists. Mean analysis time was approximately 20 s per variant (32 h total time). Reviewed cases were classified as: 879 (93.0%) undiagnosed, 63 (6.6%) putatively diagnosed, and 4 (0.4%) definitively diagnosed. New strategies are needed to enable efficient review of genomic findings in unsolved cases. We report on a fast and practical approach to address this need and improve overall diagnostic success in patient testing through a recurrent reannotation process.


Subject(s)
Genomics , Humans , Genomics/methods , Exome/genetics , Exome Sequencing/methods , Databases, Genetic , Genetic Testing/methods , Genome, Human , Whole Genome Sequencing/methods , Phenotype
11.
Genes (Basel) ; 15(1)2024 01 18.
Article in English | MEDLINE | ID: mdl-38255001

ABSTRACT

The LMNA gene encodes lamin A and lamin C, which play important roles in nuclear organization. Pathogenic variants in LMNA cause laminopathies, a group of disorders with diverse phenotypes. There are two main groups of disease-causing variants: missense variants affecting dimerization and intermolecular interactions, and heterozygous substitutions activating cryptic splice sites. These variants lead to different disorders, such as dilated cardiomyopathy and Hutchinson-Gilford progeria (HGP). Among these, the phenotypic terms for LMNA-associated cardiocutaneous progeria syndrome (LCPS), which does not alter lamin A processing and has an older age of onset, have been described. Here, we present the workup of an LMNA variant of uncertain significance, NM_170707.2 c. 4G>A, p.(Glu2Lys), in a 36-year-old female with severe calcific aortic stenosis, a calcified mitral valve, premature aging, and a family history of similar symptoms. Due to the uncertainty of in silico predictions for this variant, an assessment of nuclear morphology was performed using the immunocytochemistry of stable cell lines to indicate whether the p.(Glu2Lys) had a similar pathogenic mechanism as a previously described pathogenic variant associated with LCPS, p.Asp300Gly. Indirect immunofluorescence analysis of nuclei from stable cell lines showed abnormal morphology, including lobulation and occasional ringed nuclei. Relative to the controls, p.Glu2Lys and p.Asp300Gly nuclei had significantly (p < 0.001) smaller average nuclear areas than controls (mean = 0.10 units, SD = 0.06 for p.Glu2Lys; and mean = 0.09 units, SD = 0.05 for p.Asp300Gly versus mean = 0.12, SD = 0.05 for WT). After functional studies and segregation studies, this variant was upgraded to likely pathogenic. In summary, our findings suggest that p.Glu2Lys impacts nuclear morphology in a manner comparable to what was observed in p.Asp300Gly cells, indicating that the variant is the likely cause of the LCPS segregating within this family.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Progeria , Female , Humans , Adult , Progeria/genetics , Lamin Type A/genetics , Cardiomyopathy, Dilated/genetics , Cell Line , Intermediate Filament Proteins
12.
Am J Med Genet A ; 194(5): e63542, 2024 May.
Article in English | MEDLINE | ID: mdl-38234180

ABSTRACT

Axenfeld-Rieger Syndrome (ARS) type 1 is a rare autosomal dominant condition characterized by anterior chamber anomalies, umbilical defects, dental hypoplasia, and craniofacial anomalies, with Meckel's diverticulum in some individuals. Here, we describe a clinically ascertained female of childbearing age with ARS for whom clinical targeted sequencing and deletion/duplication analysis followed by clinical exome and genome sequencing resulted in no pathogenic variants or variants of unknown significance in PITX2 or FOXC1. Advanced bioinformatic analysis of the genome data identified a complex, balanced rearrangement disrupting PITX2. This case is the first reported intrachromosomal rearrangement leading to ARS, illustrating that for patients with compelling clinical phenotypes but negative genomic testing, additional bioinformatic analysis are essential to identify subtle genomic abnormalities in target genes.


Subject(s)
Anterior Eye Segment , Eye Abnormalities , Eye Diseases, Hereditary , Homeobox Protein PITX2 , Female , Humans , Anterior Eye Segment/abnormalities , Eye Abnormalities/diagnosis , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Eye Diseases, Hereditary/diagnosis , Eye Diseases, Hereditary/genetics , Eye Diseases, Hereditary/pathology , Forkhead Transcription Factors/genetics , Homeodomain Proteins/genetics
14.
mSphere ; 8(6): e0023223, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37882516

ABSTRACT

IMPORTANCE: We analyzed over 22,000 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes of patient samples tested at Mayo Clinic Laboratories during a 2-year period in the COVID-19 pandemic, which included Alpha, Delta, and Omicron variants of concern to examine the roles and relationships of Minnesota virus transmission. We found that Hennepin County, the most populous county, drove the transmission of SARS-CoV-2 viruses in the state after including the formation of earlier clades including 20A, 20C, and 20G, as well as variants of concern Alpha and Delta. We also found that Hennepin County was the source for most of the county-to-county introductions after an initial predicted introduction with the virus in early 2020 from an international source, while other counties acted as transmission "sinks." In addition, major policies, such as the end of the lockdown period in 2020 or the end of all restrictions in 2021, did not appear to have an impact on virus diversity across individual counties.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Minnesota/epidemiology , Pandemics , COVID-19/epidemiology , Communicable Disease Control , Genomics
15.
J Clin Microbiol ; 61(10): e0042923, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37750719

ABSTRACT

Cytomegalovirus (CMV) is a significant cause of morbidity and mortality among immunocompromised hosts, including transplant recipients. Antiviral prophylaxis or treatment is used to reduce the incidence of CMV disease in this patient population; however, there is concern about increasing antiviral resistance. Detection of antiviral resistance in CMV was traditionally accomplished using Sanger sequencing of UL54 and UL97 genes, in which specific mutations may result in reduced antiviral activity. In this study, a novel next-generation sequencing (NGS) method was developed and validated to detect mutations in UL54/UL97 associated with antiviral resistance. Plasma samples (n = 27) submitted for antiviral resistance testing by Sanger sequencing were also analyzed using the NGS method. When compared to Sanger sequencing, the NGS assay demonstrated 100% (27/27) overall agreement for determining antiviral resistance/susceptibility and 88% (22/25) agreement at the level of resistance-associated mutations. The limit of detection of the NGS method was determined to be 500 IU/mL, and the lower threshold for detecting mutations associated with resistance was established at 15%. The NGS assay represents a novel laboratory tool that assists healthcare providers in treating patients who are infected with CMV harboring resistance-associated mutations and who may benefit from tailored antiviral therapy.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Cytomegalovirus/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cytomegalovirus Infections/epidemiology , Mutation , High-Throughput Nucleotide Sequencing/methods , Drug Resistance, Viral/genetics
16.
Mol Genet Genomic Med ; 11(12): e2271, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37641480

ABSTRACT

BACKGROUND: The PI3K/AKT pathway, extensively studied in cancer, is vital for regulating cell metabolism, differentiation, and proliferation. Pathogenic variants in the PIK3R1 gene, which encodes three regulatory units of class IA PI3Ks, have been found in affected tissue of individuals with vascular lesions. These variants predominantly occur in the iSH2 domain, disrupting inhibitory contacts with the catalytic unit and leading to PI3K activation. Germline variants in this gene are also linked to an immunological condition called Activated PI3K delta syndrome type 2 (APDS2). METHODS: This is a case report and literature review. Clinical data were retrieved from medical records. RESULTS: A male patient presented with extensive vascular malformation covering over 90% of his body, along with complete 2-3 toe syndactyly, suggesting a vascular malformation syndrome called PROS. Low levels of IgA and IgG were detected. The patient achieved his developmental milestones and had above-average weight, height, and head circumference. Exome sequencing of skin and blood DNA revealed a de novo variant in PIK3R1 (c.1746-2A>G, p.?) in 9% of the patient's blood cells and 25% of cultured fibroblasts. Initially, classified as a variant of uncertain significance, this variant was later confirmed to be the cause. CONCLUSIONS: This is the first intronic SNV in a canonical splice site within iSH2 described, highlighting the importance of iSH2 in the regulation of the PI3K/AKT pathway and its involvement in the development of vascular overgrowth and antibody deficiency.


Subject(s)
Primary Immunodeficiency Diseases , Vascular Malformations , Humans , Male , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Primary Immunodeficiency Diseases/genetics , Transcription Factors , Vascular Malformations/genetics , Immunoglobulins , Class Ia Phosphatidylinositol 3-Kinase/genetics
17.
iScience ; 26(6): 106818, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37235056

ABSTRACT

Autoimmune polyendocrine syndrome type 1 (APS-1) is an autosomal recessive disease characterized by severe and childhood onset organ-specific autoimmunity caused by mutations in the autoimmune regulator (AIRE) gene. More recently, dominant-negative mutations within the PHD1, PHD2, and SAND domains have been associated with an incompletely penetrant milder phenotype with later onset familial clustering, often masquerading as organ-specific autoimmunity. Patients with immunodeficiencies or autoimmunity where genetic analyses revealed heterozygous AIRE mutations were included in the study and the dominant-negative effects of the AIRE mutations were functionally assessed in vitro. We here report additional families with phenotypes ranging from immunodeficiency, enteropathy, and vitiligo to asymptomatic carrier status. APS-1-specific autoantibodies can hint to the presence of these pathogenic AIRE variants although their absence does not rule out their presence. Our findings suggest functional studies of heterozygous AIRE variants and close follow-up of identified individuals and their families.

18.
Am J Hum Genet ; 110(6): 989-997, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37167966

ABSTRACT

Statins are a mainstay intervention for cardiovascular disease prevention, yet their use can cause rare severe myopathy. HMG-CoA reductase, an essential enzyme in the mevalonate pathway, is the target of statins. We identified nine individuals from five unrelated families with unexplained limb-girdle like muscular dystrophy and bi-allelic variants in HMGCR via clinical and research exome sequencing. The clinical features resembled other genetic causes of muscular dystrophy with incidental high CPK levels (>1,000 U/L), proximal muscle weakness, variable age of onset, and progression leading to impaired ambulation. Muscle biopsies in most affected individuals showed non-specific dystrophic changes with non-diagnostic immunohistochemistry. Molecular modeling analyses revealed variants to be destabilizing and affecting protein oligomerization. Protein activity studies using three variants (p.Asp623Asn, p.Tyr792Cys, and p.Arg443Gln) identified in affected individuals confirmed decreased enzymatic activity and reduced protein stability. In summary, we showed that individuals with bi-allelic amorphic (i.e., null and/or hypomorphic) variants in HMGCR display phenotypes that resemble non-genetic causes of myopathy involving this reductase. This study expands our knowledge regarding the mechanisms leading to muscular dystrophy through dysregulation of the mevalonate pathway, autoimmune myopathy, and statin-induced myopathy.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Muscular Diseases , Muscular Dystrophies, Limb-Girdle , Muscular Dystrophies , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Mevalonic Acid , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/diagnosis , Muscular Diseases/genetics , Oxidoreductases , Hydroxymethylglutaryl CoA Reductases/genetics , Hydroxymethylglutaryl CoA Reductases/adverse effects
19.
Clin Chem ; 69(7): 711-717, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37086467

ABSTRACT

BACKGROUND: Large ß-globin gene cluster deletions (hereditary persistence of fetal hemoglobin [Hb] or ß-, δß-, γδß-, and ϵγδß-thalassemia), are associated with widely disparate phenotypes, including variable degrees of microcytic anemia and Hb F levels. When present, increased Hb A2 is used as a surrogate marker for ß-thalassemia. Notably, ϵγδß-thalassemias lack the essential regulatory locus control region (LCR) and cause severe transient perinatal anemia but normal newborn screen (NBS) results and Hb A2 levels. Herein, we report a novel deletion of the ϵ, Aγ, Gγ, and ψß loci with intact LCR, δ-, and ß-regions in 2 women and newborn twins. METHODS: Capillary electrophoresis (CE), high-performance liquid chromatography (HPLC), DNA sequencing, multiplex ligation-dependent probe amplification (MLPA), gap-polymerase chain reaction (gap-PCR), and long-read sequencing (LRS) were performed. RESULTS: NBS showed an Hb A > Hb F pattern for both twins. At 20 months, Hb A2 was increased similarly to that in the mother and an unrelated woman. Unexplained microcytosis was absent and the twins lacked severe neonatal anemia. MLPA, LRS, and gap-PCR confirmed a 32 599 base pair deletion of ϵ (HBE1) through ψß (HBBP1) loci. CONCLUSIONS: This deletion represents a hemoglobinopathy category with a distinct phenotype that has not been previously described, an ϵγ-thalassemia. Both the NBS Hb A > F pattern and the subsequent increased Hb A2 without microcytosis are unusual. A similar deletion should be considered when this pattern is encountered and appropriate test methods selected for detection. Knowledge of the clinical impact of this new category will improve genetic counselling, with distinction from the severe transient anemia associated with ϵγδß-thalassemia.


Subject(s)
Hemoglobinopathies , Thalassemia , beta-Thalassemia , Humans , Female , Thalassemia/genetics , beta-Thalassemia/diagnosis , beta-Thalassemia/genetics , Fetal Hemoglobin/genetics , Multiplex Polymerase Chain Reaction
20.
Am J Hum Genet ; 110(5): 774-789, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37054711

ABSTRACT

The Integrator complex is a multi-subunit protein complex that regulates the processing of nascent RNAs transcribed by RNA polymerase II (RNAPII), including small nuclear RNAs, enhancer RNAs, telomeric RNAs, viral RNAs, and protein-coding mRNAs. Integrator subunit 11 (INTS11) is the catalytic subunit that cleaves nascent RNAs, but, to date, mutations in this subunit have not been linked to human disease. Here, we describe 15 individuals from 10 unrelated families with bi-allelic variants in INTS11 who present with global developmental and language delay, intellectual disability, impaired motor development, and brain atrophy. Consistent with human observations, we find that the fly ortholog of INTS11, dIntS11, is essential and expressed in the central nervous systems in a subset of neurons and most glia in larval and adult stages. Using Drosophila as a model, we investigated the effect of seven variants. We found that two (p.Arg17Leu and p.His414Tyr) fail to rescue the lethality of null mutants, indicating that they are strong loss-of-function variants. Furthermore, we found that five variants (p.Gly55Ser, p.Leu138Phe, p.Lys396Glu, p.Val517Met, and p.Ile553Glu) rescue lethality but cause a shortened lifespan and bang sensitivity and affect locomotor activity, indicating that they are partial loss-of-function variants. Altogether, our results provide compelling evidence that integrity of the Integrator RNA endonuclease is critical for brain development.


Subject(s)
Drosophila Proteins , Nervous System Diseases , Adult , Animals , Humans , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Mutation/genetics , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL