Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
J Imaging Inform Med ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862851

ABSTRACT

3D data from high-resolution volumetric imaging is a central resource for diagnosis and treatment in modern medicine. While the fast development of AI enhances imaging and analysis, commonly used visualization methods lag far behind. Recent research used extended reality (XR) for perceiving 3D images with visual depth perception and touch but used restrictive haptic devices. While unrestricted touch benefits volumetric data examination, implementing natural haptic interaction with XR is challenging. The research question is whether a multisensory XR application with intuitive haptic interaction adds value and should be pursued. In a study, 24 experts for biomedical images in research and medicine explored 3D medical shapes with 3 applications: a multisensory virtual reality (VR) prototype using haptic gloves, a simple VR prototype using controllers, and a standard PC application. Results of standardized questionnaires showed no significant differences between all application types regarding usability and no significant difference between both VR applications regarding presence. Participants agreed to statements that VR visualizations provide better depth information, using the hands instead of controllers simplifies data exploration, the multisensory VR prototype allows intuitive data exploration, and it is beneficial over traditional data examination methods. While most participants mentioned manual interaction as the best aspect, they also found it the most improvable. We conclude that a multisensory XR application with improved manual interaction adds value for volumetric biomedical data examination. We will proceed with our open-source research project ISH3DE (Intuitive Stereoptic Haptic 3D Data Exploration) to serve medical education, therapeutic decisions, surgery preparations, or research data analysis.

2.
Sci Data ; 11(1): 596, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844767

ABSTRACT

Aortic dissections (ADs) are serious conditions of the main artery of the human body, where a tear in the inner layer of the aortic wall leads to the formation of a new blood flow channel, named false lumen. ADs affecting the aorta distally to the left subclavian artery are classified as a Stanford type B aortic dissection (type B AD). This is linked to substantial morbidity and mortality, however, the course of the disease for the individual case is often unpredictable. Computed tomography angiography (CTA) is the gold standard for the diagnosis of type B AD. To advance the tools available for the analysis of CTA scans, we provide a CTA collection of 40 type B AD cases from clinical routine with corresponding expert segmentations of the true and false lumina. Segmented CTA scans might aid clinicians in decision making, especially if it is possible to fully automate the process. Therefore, the data collection is meant to be used to develop, train and test algorithms.


Subject(s)
Algorithms , Aortic Dissection , Computed Tomography Angiography , Humans , Aortic Dissection/diagnostic imaging , Artificial Intelligence
3.
J Imaging Inform Med ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926263

ABSTRACT

Standardized reporting of multiparametric prostate MRI (mpMRI) is widespread and follows international standards (Pi-RADS). However, quantitative measurements from mpMRI are not widely comparable. Although T2 mapping sequences can provide repeatable quantitative image measurements and extract reliable imaging biomarkers from mpMRI, they are often time-consuming. We therefore investigated the value of quantitative measurements on a highly accelerated T2 mapping sequence, in order to establish a threshold to differentiate benign from malignant lesions. For this purpose, we evaluated a novel, highly accelerated T2 mapping research sequence that enables high-resolution image acquisition with short acquisition times in everyday clinical practice. In this retrospective single-center study, we included 54 patients with clinically indicated MRI of the prostate and biopsy-confirmed carcinoma (n = 37) or exclusion of carcinoma (n = 17). All patients had received a standard of care biopsy of the prostate, results of which were used to confirm or exclude presence of malignant lesions. We used the linear mixed-effects model-fit by REML to determine the difference between mean values of cancerous tissue and healthy tissue. We found good differentiation between malignant lesions and normal appearing tissue in the peripheral zone based on the mean T2 value. Specifically, the mean T2 value for tissue without malignant lesions was (151.7 ms [95% CI: 146.9-156.5 ms] compared to 80.9 ms for malignant lesions [95% CI: 67.9-79.1 ms]; p < 0.001). Based on this assessment, a limit of 109.2 ms is suggested. Aditionally, a significant correlation was observed between T2 values of the peripheral zone and PI-RADS scores (p = 0.0194). However, no correlation was found between the Gleason Score and the T2 relaxation time. Using REML, we found a difference of -82.7 ms in mean values between cancerous tissue and healthy tissue. We established a cut-off-value of 109.2 ms to accurately differentiate between malignant and non-malignant prostate regions. The addition of T2 mapping sequences to routine imaging could benefit automated lesion detection and facilitate contrast-free multiparametric MRI of the prostate.

4.
Comput Methods Programs Biomed ; 252: 108215, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781811

ABSTRACT

BACKGROUND AND OBJECTIVE: Cell segmentation in bright-field histological slides is a crucial topic in medical image analysis. Having access to accurate segmentation allows researchers to examine the relationship between cellular morphology and clinical observations. Unfortunately, most segmentation methods known today are limited to nuclei and cannot segment the cytoplasm. METHODS: We present a new network architecture Cyto R-CNN that is able to accurately segment whole cells (with both the nucleus and the cytoplasm) in bright-field images. We also present a new dataset CytoNuke, consisting of multiple thousand manual annotations of head and neck squamous cell carcinoma cells. Utilizing this dataset, we compared the performance of Cyto R-CNN to other popular cell segmentation algorithms, including QuPath's built-in algorithm, StarDist, Cellpose and a multi-scale Attention Deeplabv3+. To evaluate segmentation performance, we calculated AP50, AP75 and measured 17 morphological and staining-related features for all detected cells. We compared these measurements to the gold standard of manual segmentation using the Kolmogorov-Smirnov test. RESULTS: Cyto R-CNN achieved an AP50 of 58.65% and an AP75 of 11.56% in whole-cell segmentation, outperforming all other methods (QuPath 19.46/0.91%; StarDist 45.33/2.32%; Cellpose 31.85/5.61%, Deeplabv3+ 3.97/1.01%). Cell features derived from Cyto R-CNN showed the best agreement to the gold standard (D¯=0.15) outperforming QuPath (D¯=0.22), StarDist (D¯=0.25), Cellpose (D¯=0.23) and Deeplabv3+ (D¯=0.33). CONCLUSION: Our newly proposed Cyto R-CNN architecture outperforms current algorithms in whole-cell segmentation while providing more reliable cell measurements than any other model. This could improve digital pathology workflows, potentially leading to improved diagnosis. Moreover, our published dataset can be used to develop further models in the future.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Neural Networks, Computer , Humans , Image Processing, Computer-Assisted/methods , Cell Nucleus , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Squamous Cell Carcinoma of Head and Neck/pathology , Cytoplasm , Reproducibility of Results , Carcinoma, Squamous Cell/diagnostic imaging , Carcinoma, Squamous Cell/pathology
5.
Sci Data ; 11(1): 483, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729970

ABSTRACT

The Sparsely Annotated Region and Organ Segmentation (SAROS) dataset was created using data from The Cancer Imaging Archive (TCIA) to provide a large open-access CT dataset with high-quality annotations of body landmarks. In-house segmentation models were employed to generate annotation proposals on randomly selected cases from TCIA. The dataset includes 13 semantic body region labels (abdominal/thoracic cavity, bones, brain, breast implant, mediastinum, muscle, parotid/submandibular/thyroid glands, pericardium, spinal cord, subcutaneous tissue) and six body part labels (left/right arm/leg, head, torso). Case selection was based on the DICOM series description, gender, and imaging protocol, resulting in 882 patients (438 female) for a total of 900 CTs. Manual review and correction of proposals were conducted in a continuous quality control cycle. Only every fifth axial slice was annotated, yielding 20150 annotated slices from 28 data collections. For the reproducibility on downstream tasks, five cross-validation folds and a test set were pre-defined. The SAROS dataset serves as an open-access resource for training and evaluating novel segmentation models, covering various scanner vendors and diseases.


Subject(s)
Tomography, X-Ray Computed , Whole Body Imaging , Female , Humans , Male , Image Processing, Computer-Assisted
6.
J Med Syst ; 48(1): 55, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780820

ABSTRACT

Designing implants for large and complex cranial defects is a challenging task, even for professional designers. Current efforts on automating the design process focused mainly on convolutional neural networks (CNN), which have produced state-of-the-art results on reconstructing synthetic defects. However, existing CNN-based methods have been difficult to translate to clinical practice in cranioplasty, as their performance on large and complex cranial defects remains unsatisfactory. In this paper, we present a statistical shape model (SSM) built directly on the segmentation masks of the skulls represented as binary voxel occupancy grids and evaluate it on several cranial implant design datasets. Results show that, while CNN-based approaches outperform the SSM on synthetic defects, they are inferior to SSM when it comes to large, complex and real-world defects. Experienced neurosurgeons evaluate the implants generated by the SSM to be feasible for clinical use after minor manual corrections. Datasets and the SSM model are publicly available at https://github.com/Jianningli/ssm .


Subject(s)
Neural Networks, Computer , Skull , Humans , Skull/surgery , Skull/anatomy & histology , Skull/diagnostic imaging , Models, Statistical , Image Processing, Computer-Assisted/methods , Plastic Surgery Procedures/methods , Prostheses and Implants
8.
Med Image Anal ; 94: 103143, 2024 May.
Article in English | MEDLINE | ID: mdl-38507894

ABSTRACT

Nuclei detection and segmentation in hematoxylin and eosin-stained (H&E) tissue images are important clinical tasks and crucial for a wide range of applications. However, it is a challenging task due to nuclei variances in staining and size, overlapping boundaries, and nuclei clustering. While convolutional neural networks have been extensively used for this task, we explore the potential of Transformer-based networks in combination with large scale pre-training in this domain. Therefore, we introduce a new method for automated instance segmentation of cell nuclei in digitized tissue samples using a deep learning architecture based on Vision Transformer called CellViT. CellViT is trained and evaluated on the PanNuke dataset, which is one of the most challenging nuclei instance segmentation datasets, consisting of nearly 200,000 annotated nuclei into 5 clinically important classes in 19 tissue types. We demonstrate the superiority of large-scale in-domain and out-of-domain pre-trained Vision Transformers by leveraging the recently published Segment Anything Model and a ViT-encoder pre-trained on 104 million histological image patches - achieving state-of-the-art nuclei detection and instance segmentation performance on the PanNuke dataset with a mean panoptic quality of 0.50 and an F1-detection score of 0.83. The code is publicly available at https://github.com/TIO-IKIM/CellViT.


Subject(s)
Cell Nucleus , Neural Networks, Computer , Humans , Eosine Yellowish-(YS) , Hematoxylin , Staining and Labeling , Image Processing, Computer-Assisted
9.
Med Image Anal ; 93: 103100, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340545

ABSTRACT

With the massive proliferation of data-driven algorithms, such as deep learning-based approaches, the availability of high-quality data is of great interest. Volumetric data is very important in medicine, as it ranges from disease diagnoses to therapy monitoring. When the dataset is sufficient, models can be trained to help doctors with these tasks. Unfortunately, there are scenarios where large amounts of data is unavailable. For example, rare diseases and privacy issues can lead to restricted data availability. In non-medical fields, the high cost of obtaining enough high-quality data can also be a concern. A solution to these problems can be the generation of realistic synthetic data using Generative Adversarial Networks (GANs). The existence of these mechanisms is a good asset, especially in healthcare, as the data must be of good quality, realistic, and without privacy issues. Therefore, most of the publications on volumetric GANs are within the medical domain. In this review, we provide a summary of works that generate realistic volumetric synthetic data using GANs. We therefore outline GAN-based methods in these areas with common architectures, loss functions and evaluation metrics, including their advantages and disadvantages. We present a novel taxonomy, evaluations, challenges, and research opportunities to provide a holistic overview of the current state of volumetric GANs.


Subject(s)
Algorithms , Data Analysis , Humans , Rare Diseases
10.
Nat Methods ; 21(2): 182-194, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38347140

ABSTRACT

Validation metrics are key for tracking scientific progress and bridging the current chasm between artificial intelligence research and its translation into practice. However, increasing evidence shows that, particularly in image analysis, metrics are often chosen inadequately. Although taking into account the individual strengths, weaknesses and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multistage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides a reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Although focused on biomedical image analysis, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. The work serves to enhance global comprehension of a key topic in image analysis validation.


Subject(s)
Artificial Intelligence
11.
Nat Methods ; 21(2): 195-212, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38347141

ABSTRACT

Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint-a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Machine Learning , Semantics
12.
Comput Methods Programs Biomed ; 245: 108013, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262126

ABSTRACT

The recent release of ChatGPT, a chat bot research project/product of natural language processing (NLP) by OpenAI, stirs up a sensation among both the general public and medical professionals, amassing a phenomenally large user base in a short time. This is a typical example of the 'productization' of cutting-edge technologies, which allows the general public without a technical background to gain firsthand experience in artificial intelligence (AI), similar to the AI hype created by AlphaGo (DeepMind Technologies, UK) and self-driving cars (Google, Tesla, etc.). However, it is crucial, especially for healthcare researchers, to remain prudent amidst the hype. This work provides a systematic review of existing publications on the use of ChatGPT in healthcare, elucidating the 'status quo' of ChatGPT in medical applications, for general readers, healthcare professionals as well as NLP scientists. The large biomedical literature database PubMed is used to retrieve published works on this topic using the keyword 'ChatGPT'. An inclusion criterion and a taxonomy are further proposed to filter the search results and categorize the selected publications, respectively. It is found through the review that the current release of ChatGPT has achieved only moderate or 'passing' performance in a variety of tests, and is unreliable for actual clinical deployment, since it is not intended for clinical applications by design. We conclude that specialized NLP models trained on (bio)medical datasets still represent the right direction to pursue for critical clinical applications.


Subject(s)
Artificial Intelligence , Physicians , Humans , Databases, Factual , Natural Language Processing , PubMed
13.
IEEE J Biomed Health Inform ; 28(1): 100-109, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37624724

ABSTRACT

Recently, deep learning has been demonstrated to be feasible in eliminating the use of gadoliniumbased contrast agents (GBCAs) through synthesizing gadolinium-free contrast-enhanced MRI (GFCE-MRI) from contrast-free MRI sequences, providing the community with an alternative to get rid of GBCAs-associated safety issues in patients. Nevertheless, generalizability assessment of the GFCE-MRI model has been largely challenged by the high inter-institutional heterogeneity of MRI data, on top of the scarcity of multi-institutional data itself. Although various data normalization methods have been adopted to address the heterogeneity issue, it has been limited to single-institutional investigation and there is no standard normalization approach presently. In this study, we aimed at investigating generalizability of GFCE-MRI model using data from seven institutions by manipulating heterogeneity of MRI data under five popular normalization approaches. Three state-of-the-art neural networks were applied to map from T1-weighted and T2-weighted MRI to contrast-enhanced MRI (CE-MRI) for GFCE-MRI synthesis in patients with nasopharyngeal carcinoma. MRI data from three institutions were used separately to generate three uni-institution models and jointly for a tri-institution model. The five normalization methods were applied to normalize the data of each model. MRI data from the remaining four institutions served as external cohorts for model generalizability assessment. Quality of GFCE-MRI was quantitatively evaluated against ground-truth CE-MRI using mean absolute error (MAE) and peak signal-to-noise ratio(PSNR). Results showed that performance of all uni-institution models remarkably dropped on the external cohorts. By contrast, model trained using multi-institutional data with Z-Score normalization yielded the best model generalizability improvement.


Subject(s)
Gadolinium , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Signal-To-Noise Ratio
14.
ArXiv ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-36945687

ABSTRACT

Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.

15.
Eur Radiol ; 34(1): 330-337, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37505252

ABSTRACT

OBJECTIVES: Provide physicians and researchers an efficient way to extract information from weakly structured radiology reports with natural language processing (NLP) machine learning models. METHODS: We evaluate seven different German bidirectional encoder representations from transformers (BERT) models on a dataset of 857,783 unlabeled radiology reports and an annotated reading comprehension dataset in the format of SQuAD 2.0 based on 1223 additional reports. RESULTS: Continued pre-training of a BERT model on the radiology dataset and a medical online encyclopedia resulted in the most accurate model with an F1-score of 83.97% and an exact match score of 71.63% for answerable questions and 96.01% accuracy in detecting unanswerable questions. Fine-tuning a non-medical model without further pre-training led to the lowest-performing model. The final model proved stable against variation in the formulations of questions and in dealing with questions on topics excluded from the training set. CONCLUSIONS: General domain BERT models further pre-trained on radiological data achieve high accuracy in answering questions on radiology reports. We propose to integrate our approach into the workflow of medical practitioners and researchers to extract information from radiology reports. CLINICAL RELEVANCE STATEMENT: By reducing the need for manual searches of radiology reports, radiologists' resources are freed up, which indirectly benefits patients. KEY POINTS: • BERT models pre-trained on general domain datasets and radiology reports achieve high accuracy (83.97% F1-score) on question-answering for radiology reports. • The best performing model achieves an F1-score of 83.97% for answerable questions and 96.01% accuracy for questions without an answer. • Additional radiology-specific pretraining of all investigated BERT models improves their performance.


Subject(s)
Information Storage and Retrieval , Radiology , Humans , Language , Machine Learning , Natural Language Processing
16.
Sci Rep ; 13(1): 21231, 2023 12 01.
Article in English | MEDLINE | ID: mdl-38040865

ABSTRACT

Cerebral organoids recapitulate the structure and function of the developing human brain in vitro, offering a large potential for personalized therapeutic strategies. The enormous growth of this research area over the past decade with its capability for clinical translation makes a non-invasive, automated analysis pipeline of organoids highly desirable. This work presents a novel non-invasive approach to monitor and analyze cerebral organoids over time using high-field magnetic resonance imaging and state-of-the-art tools for automated image analysis. Three specific objectives are addressed, (I) organoid segmentation to investigate organoid development over time, (II) global cysticity classification and (III) local cyst segmentation for organoid quality assessment. We show that organoid growth can be monitored reliably over time and cystic and non-cystic organoids can be separated with high accuracy, with on par or better performance compared to state-of-the-art tools applied to brightfield imaging. Local cyst segmentation is feasible but could be further improved in the future. Overall, these results highlight the potential of the pipeline for clinical application to larger-scale comparative organoid analysis.


Subject(s)
Cysts , Organoids , Humans , Organoids/pathology , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Cysts/pathology , Artificial Intelligence
17.
Sci Data ; 10(1): 796, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37951957

ABSTRACT

The availability of computational hardware and developments in (medical) machine learning (MML) increases medical mixed realities' (MMR) clinical usability. Medical instruments have played a vital role in surgery for ages. To further accelerate the implementation of MML and MMR, three-dimensional (3D) datasets of instruments should be publicly available. The proposed data collection consists of 103, 3D-scanned medical instruments from the clinical routine, scanned with structured light scanners. The collection consists, for example, of instruments, like retractors, forceps, and clamps. The collection can be augmented by generating likewise models using 3D software, resulting in an inflated dataset for analysis. The collection can be used for general instrument detection and tracking in operating room settings, or a freeform marker-less instrument registration for tool tracking in augmented reality. Furthermore, for medical simulation or training scenarios in virtual reality and medical diminishing reality in mixed reality. We hope to ease research in the field of MMR and MML, but also to motivate the release of a wider variety of needed surgical instrument datasets.


Subject(s)
Imaging, Three-Dimensional , Surgical Instruments , Virtual Reality , Computer Simulation , Software
18.
BMC Med Imaging ; 23(1): 174, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37907876

ABSTRACT

BACKGROUND: With the rise in importance of personalized medicine and deep learning, we combine the two to create personalized neural networks. The aim of the study is to show a proof of concept that data from just one patient can be used to train deep neural networks to detect tumor progression in longitudinal datasets. METHODS: Two datasets with 64 scans from 32 patients with glioblastoma multiforme (GBM) were evaluated in this study. The contrast-enhanced T1w sequences of brain magnetic resonance imaging (MRI) images were used. We trained a neural network for each patient using just two scans from different timepoints to map the difference between the images. The change in tumor volume can be calculated with this map. The neural networks were a form of a Wasserstein-GAN (generative adversarial network), an unsupervised learning architecture. The combination of data augmentation and the network architecture allowed us to skip the co-registration of the images. Furthermore, no additional training data, pre-training of the networks or any (manual) annotations are necessary. RESULTS: The model achieved an AUC-score of 0.87 for tumor change. We also introduced a modified RANO criteria, for which an accuracy of 66% can be achieved. CONCLUSIONS: We show a novel approach to deep learning in using data from just one patient to train deep neural networks to monitor tumor change. Using two different datasets to evaluate the results shows the potential to generalize the method.


Subject(s)
Glioblastoma , Neural Networks, Computer , Humans , Magnetic Resonance Imaging , Brain , Glioblastoma/diagnostic imaging , Image Processing, Computer-Assisted/methods
19.
Sci Rep ; 13(1): 20229, 2023 11 19.
Article in English | MEDLINE | ID: mdl-37981641

ABSTRACT

Traditional convolutional neural network (CNN) methods rely on dense tensors, which makes them suboptimal for spatially sparse data. In this paper, we propose a CNN model based on sparse tensors for efficient processing of high-resolution shapes represented as binary voxel occupancy grids. In contrast to a dense CNN that takes the entire voxel grid as input, a sparse CNN processes only on the non-empty voxels, thus reducing the memory and computation overhead caused by the sparse input data. We evaluate our method on two clinically relevant skull reconstruction tasks: (1) given a defective skull, reconstruct the complete skull (i.e., skull shape completion), and (2) given a coarse skull, reconstruct a high-resolution skull with fine geometric details (shape super-resolution). Our method outperforms its dense CNN-based counterparts in the skull reconstruction task quantitatively and qualitatively, while requiring substantially less memory for training and inference. We observed that, on the 3D skull data, the overall memory consumption of the sparse CNN grows approximately linearly during inference with respect to the image resolutions. During training, the memory usage remains clearly below increases in image resolution-an [Formula: see text] increase in voxel number leads to less than [Formula: see text] increase in memory requirements. Our study demonstrates the effectiveness of using a sparse CNN for skull reconstruction tasks, and our findings can be applied to other spatially sparse problems. We prove this by additional experimental results on other sparse medical datasets, like the aorta and the heart. Project page at https://github.com/Jianningli/SparseCNN .


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Image Processing, Computer-Assisted/methods , Skull/diagnostic imaging , Head
20.
Healthcare (Basel) ; 11(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37685411

ABSTRACT

Data-driven machine learning in medical research and diagnostics needs large-scale datasets curated by clinical experts. The generation of large datasets can be challenging in terms of resource consumption and time effort, while generalizability and validation of the developed models significantly benefit from variety in data sources. Training algorithms on smaller decentralized datasets through federated learning can reduce effort, but require the implementation of a specific and ambitious infrastructure to share data, algorithms and computing time. Additionally, it offers the opportunity of maintaining and keeping the data locally. Thus, data safety issues can be avoided because patient data must not be shared. Machine learning models are trained on local data by sharing the model and through an established network. In addition to commercial applications, there are also numerous academic and customized implementations of network infrastructures available. The configuration of these networks primarily differs, yet adheres to a standard framework composed of fundamental components. In this technical note, we propose basic infrastructure requirements for data governance, data science workflows, and local node set-up, and report on the advantages and experienced pitfalls in implementing the local infrastructure with the German Radiological Cooperative Network initiative as the use case example. We show how the infrastructure can be built upon some base components to reflect the needs of a federated learning network and how they can be implemented considering both local and global network requirements. After analyzing the deployment process in different settings and scenarios, we recommend integrating the local node into an existing clinical IT infrastructure. This approach offers benefits in terms of maintenance and deployment effort compared to external integration in a separate environment (e.g., the radiology department). This proposed groundwork can be taken as an exemplary development guideline for future applications of federated learning networks in clinical and scientific environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...