Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 344
Filter
1.
JAMA ; 332(1): 9-10, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38829659

ABSTRACT

This Viewpoint explores the effects of weight loss achieved through GLP-1­based antiobesity medications on weight regain, fat-free mass, and skeletal muscle mass in people with obesity.


Subject(s)
Muscle, Skeletal , Obesity , Sarcopenia , Weight Loss , Humans , Muscle, Skeletal/pathology , Obesity/complications , Sarcopenia/etiology , Male , Female , Body Composition
2.
Neurosurgery ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861643

ABSTRACT

BACKGROUND AND OBJECTIVES: Pressure reactivity index (PRx) has been proposed as a metric associated with cerebrovascular autoregulatory (CA) function and has been thoroughly investigated in clinical research. In this study, PRx is validated in a porcine cranial window model, developed to visualize pial arteriolar autoregulation and its limits. METHODS: We measured arterial blood pressure, intracranial pressure, pial arteriolar diameter, and red blood cell (RBC) velocity in a closed cranial window piglet model during gradual balloon catheter-induced arterial hypotension (n = 10) or hypertension (n = 10). CA limits were derived through piecewise linear regression of calculated RBC flux vs cerebral perfusion pressure (CPP), leading for each arteriole to 1 lower limit of autoregulation (LLA) and 2 upper limits of autoregulation (ULA1 and ULA2). Autoregulation limits were compared with PRx thresholds, and receiver operating curve analysis was performed with and without CPP binning. A linear mixed effects model of PRx was performed. RESULTS: Receiver operating curve analysis indicated an area under the curve (AUC) for LLA prediction by a PRx of 0.65 (95% CI: 0.64-0.67) and 0.77 (95% CI: 0.69-0.86) without and with CPP binning, respectively. The AUC for ULA1 prediction by PRx was 0.69 (95% CI: 0.68-0.69) without and 0.75 (95% CI: 0.68-0.82) with binning. The AUC for ULA2 prediction was 0.55 (95% CI: 0.55-0.58) without and 0.63 (95% CI 0.53-0.72) with binning. The sensitivity and specificity of binned PRx were 65%/90% for LLA, 69%/71% for ULA1, and 59%/74% for ULA2, showing wide interindividual variability. In the linear mixed effects model, pial arteriolar diameter changes were significantly associated with PRx changes (P = .002), whereas RBC velocity (P = .28) and RBC flux (P = .24) were not. CONCLUSION: We conclude that PRx is predominantly determined by pial arteriolar diameter changes and moderately predicts CA limits. Performance to detect the CA limits varied highly on an individual level. Active therapeutic strategies based on PRx and the associated correlation metrics should incorporate these limitations.

3.
Cell Metab ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38889724

ABSTRACT

Deficiency of the epigenome modulator histone deacetylase 3 (HDAC3) in brown adipose tissue (BAT) impairs the ability of mice to survive in near-freezing temperatures. Here, we report that short-term exposure to mild cold temperature (STEMCT: 15°C for 24 h) averted lethal hypothermia of mice lacking HDAC3 in BAT (HDAC3 BAT KO) exposed to 4°C. STEMCT restored the induction of the thermogenic coactivator PGC-1α along with UCP1 at 22°C, which is greatly impaired in HDAC3-deficient BAT, and deletion of either UCP1 or PGC-1α prevented the protective effect of STEMCT. Remarkably, this protection lasted for up to 7 days. Transcriptional activator C/EBPß was induced by short-term cold exposure in mouse and human BAT and, uniquely, remained high for 7 days following STEMCT. Adeno-associated virus-mediated knockdown of BAT C/EBPß in HDAC3 BAT KO mice erased the persistent memory of STEMCT, revealing the existence of a C/EBPß-dependent and HDAC3-independent cold-adaptive epigenomic memory.

4.
Front Psychol ; 15: 1331155, 2024.
Article in English | MEDLINE | ID: mdl-38882510

ABSTRACT

Exposure therapy is a first-line, empirically validated treatment for anxiety, obsessive-compulsive, and trauma-related disorders. Extinction learning is the predominant theoretical framework for exposure therapy, whereby repeated disconfirmation of a feared outcome yields fear reduction over time. Although this framework has strong empirical support and substantial translational utility, extinction learning is unlikely to be the sole process underlying the therapeutic effects of exposure therapy. In our clinic, we commonly treat obsessive-compulsive disorder (OCD) patients successfully with exposure therapy even when some or all of their feared outcomes are not amenable to disconfirmation and, by extension, to extinction learning. Herein, we present a generic clinical vignette illustrating a commonly encountered feared outcome in OCD that cannot be disconfirmed through exposure (damnation resulting from blasphemous thoughts). We describe two specific non-extinction-based strategies we commonly employ in such cases, and we associate these strategies with known change mechanisms that might account for their effectiveness: (1) non-associative habituation to aversive stimuli, and (2) fear-memory elicitation and subsequent reconsolidation. We discuss the limitations inherent in the reverse-translational approach taken and its opportunities for expanding the framework of exposure therapy.

5.
Metabolism ; : 155931, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38852020

ABSTRACT

The spectrum of cardiorenal and metabolic diseases comprises many disorders, including obesity, type 2 diabetes (T2D), chronic kidney disease (CKD), atherosclerotic cardiovascular disease (ASCVD), heart failure (HF), dyslipidemias, hypertension, and associated comorbidities such as pulmonary diseases and metabolism dysfunction-associated steatotic liver disease and metabolism dysfunction-associated steatohepatitis (MASLD and MASH, respectively, formerly known as nonalcoholic fatty liver disease and nonalcoholic steatohepatitis [NAFLD and NASH]). Because cardiorenal and metabolic diseases share pathophysiologic pathways, two or more are often present in the same individual. Findings from recent outcome trials have demonstrated benefits of various treatments across a range of conditions, suggesting a need for practice recommendations that will guide clinicians to better manage complex conditions involving diabetes, cardiorenal, and/or metabolic (DCRM) diseases. To meet this need, we formed an international volunteer task force comprising leading cardiologists, nephrologists, endocrinologists, and primary care physicians to develop the DCRM 2.0 Practice Recommendations, an updated and expanded revision of a previously published multispecialty consensus on the comprehensive management of persons living with DCRM. The recommendations are presented as 22 separate graphics covering the essentials of management to improve general health, control cardiorenal risk factors, and manage cardiorenal and metabolic comorbidities, leading to improved patient outcomes.

7.
Psychon Bull Rev ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769269

ABSTRACT

Racial stereotypes are commonly activated by informational cues that are detectable in people's faces. Here, we used a sequential priming task to examine whether and how the salience of emotion (angry/scowling vs. happy/smiling expressions) or apparent race (Black vs. White) information in male face primes shapes racially biased weapon identification (gun vs. tool) decisions. In two experiments (Ntotal = 546) using two different manipulations of facial information salience, racial bias in weapon identification was weaker when the salience of emotion expression versus race was heightened. Using diffusion decision modeling, we tested competing accounts of the cognitive mechanism by which the salience of facial information moderates this behavioral effect. Consistent support emerged for an initial bias account, whereby the decision process began closer to the "gun" response upon seeing faces of Black versus White men, and this racially biased shift in the starting position was weaker when emotion versus race information was salient. We discuss these results vis-à-vis prior empirical and theoretical work on how facial information salience moderates racial bias in decision-making.

8.
Cell Metab ; 36(4): 745-761.e5, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38569471

ABSTRACT

There is considerable heterogeneity in the cardiometabolic abnormalities associated with obesity. We evaluated multi-organ system metabolic function in 20 adults with metabolically healthy obesity (MHO; normal fasting glucose and triglycerides, oral glucose tolerance, intrahepatic triglyceride content, and whole-body insulin sensitivity), 20 adults with metabolically unhealthy obesity (MUO; prediabetes, hepatic steatosis, and whole-body insulin resistance), and 15 adults who were metabolically healthy lean. Compared with MUO, people with MHO had (1) altered skeletal muscle biology (decreased ceramide content and increased expression of genes involved in BCAA catabolism and mitochondrial structure/function); (2) altered adipose tissue biology (decreased expression of genes involved in inflammation and extracellular matrix remodeling and increased expression of genes involved in lipogenesis); (3) lower 24-h plasma glucose, insulin, non-esterified fatty acids, and triglycerides; (4) higher plasma adiponectin and lower plasma PAI-1 concentrations; and (5) decreased oxidative stress. These findings provide a framework of potential mechanisms responsible for MHO and the metabolic heterogeneity of obesity. This study was registered at ClinicalTrials.gov (NCT02706262).


Subject(s)
Cardiovascular Diseases , Insulin Resistance , Metabolic Syndrome , Obesity, Metabolically Benign , Adult , Humans , Obesity/metabolism , Triglycerides , Metabolic Syndrome/metabolism , Body Mass Index , Risk Factors
9.
Sci Rep ; 14(1): 8719, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622207

ABSTRACT

Occult hemorrhages after trauma can be present insidiously, and if not detected early enough can result in patient death. This study evaluated a hemorrhage model on 18 human subjects, comparing the performance of traditional vital signs to multiple off-the-shelf non-invasive biomarkers. A validated lower body negative pressure (LBNP) model was used to induce progression towards hypovolemic cardiovascular instability. Traditional vital signs included mean arterial pressure (MAP), electrocardiography (ECG), plethysmography (Pleth), and the test systems utilized electrical impedance via commercial electrical impedance tomography (EIT) and multifrequency electrical impedance spectroscopy (EIS) devices. Absolute and relative metrics were used to evaluate the performance in addition to machine learning-based modeling. Relative EIT-based metrics measured on the thorax outperformed vital sign metrics (MAP, ECG, and Pleth) achieving an area-under-the-curve (AUC) of 0.99 (CI 0.95-1.00, 100% sensitivity, 87.5% specificity) at the smallest LBNP change (0-15 mmHg). The best vital sign metric (MAP) at this LBNP change yielded an AUC of 0.6 (CI 0.38-0.79, 100% sensitivity, 25% specificity). Out-of-sample predictive performance from machine learning models were strong, especially when combining signals from multiple technologies simultaneously. EIT, alone or in machine learning-based combination, appears promising as a technology for early detection of progression toward hemodynamic instability.


Subject(s)
Cardiovascular System , Hypovolemia , Humans , Hypovolemia/diagnosis , Lower Body Negative Pressure , Vital Signs , Biomarkers
10.
Case Rep Oncol ; 17(1): 10-16, 2024.
Article in English | MEDLINE | ID: mdl-38179547

ABSTRACT

Introduction: Pleiomorphic xanthoastrocytoma (PXA) is considered a low-grade glioma with a favorable prognosis following surgical resection. We present a case report of a BRAFV600E mutant malignantly transformed and disseminated PXA that was successfully treated with BRAF-/MEK-targeted therapy (dabrafenib/trametinib). Case Presentation: At the age of 16 years, our patient underwent an initial subtotal resection of a right occipital PXA. Six months later, a reintervention for an asymptomatic tumor recurrence was performed and complete resection was achieved. The patient has been followed up by MRI for 14 years without arguments for recurrence but was lost to follow-up thereafter. At 38 years of age, he presented with a symptomatic local recurrence with extra-cerebral soft tissue extension, for which a third surgical resection was performed. Anatomopathological examination reported a grade 3 anaplastic PXA (aPXA); molecular analysis detected a BRAFV600E mutation. Three months later, before the initiation of radiotherapy, a local tumor recurrence was diagnosed, for which he underwent a fourth surgical resection. Radiotherapy was performed following the surgical debulking. One month after completion of radiotherapy, disease progression was documented including multiple sites of extracranial metastases (skeletal, lung, cervical lymph node, and subcutaneous metastases). Systemic treatment with a combination of BRAF-/MEK-inhibitors (dabrafenib/trametinib) was initiated and resulted in a rapid and deep tumor response (partial response according to RECISTv1.1) and absence of BRAFV600E mutant ctDNA in plasma at 6 weeks after treatment initiation. A near-complete metabolic remission was documented on [18F]FDG-PET/CT 3 months after starting systemic therapy. Conclusion: We present a rare case of malignant transformation and systemic dissemination of a BRAFV600E mutant PXA, occurring 20 years after the initial diagnosis. This case highlights the importance of long-term follow-up of patients diagnosed with these rare central nervous system tumors that initially are considered benign and also illustrates that BRAF/MEK inhibition can be an effective therapy for BRAFV600E mutated PXA, underscoring the importance of performing molecular genetic profiling of these tumors.

11.
Res Sq ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38260478

ABSTRACT

N-acetylaspartate (NAA), the brain's second most abundant metabolite, provides essential substrates for myelination through its hydrolysis. However, activities and physiological roles of NAA in other tissues remain unknown. Here, we show aspartoacylase (ASPA) expression in white adipose tissue (WAT) governs systemic NAA levels for postprandial body temperature regulation. Proteomics and mass spectrometry revealed NAA accumulation in WAT of Aspa knockout mice stimulated the pentose phosphate pathway and pyrimidine production. Stable isotope tracing confirmed higher incorporation of glucose-derived carbon into pyrimidine metabolites in Aspa knockout cells. Additionally, serum NAA positively correlates with the pyrimidine intermediate orotidine and this relationship predicted lower body mass index in humans. Using whole-body and tissue-specific knockout mouse models, we demonstrate that fat cells provided plasma NAA and suppressed postprandial body temperature elevation. Furthermore, exogenous NAA supplementation reduced body temperature. Our study unveils WAT-derived NAA as an endocrine regulator of postprandial body temperature and physiological homeostasis.

12.
Cell Rep Med ; 5(1): 101370, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38232692

ABSTRACT

Although a high amount of brown adipose tissue (BAT) is associated with low plasma triglyceride concentration, the mechanism responsible for this relationship in people is not clear. Here, we evaluate the interrelationships among BAT, very-low-density lipoprotein triglyceride (VLDL-TG), and free fatty acid (FFA) plasma kinetics during thermoneutrality in women with overweight/obesity who had a low (<20 mL) or high (≥20 mL) volume of cold-activated BAT (assessed by using positron emission tomography in conjunction with 2-deoxy-2-[18F]-fluoro-glucose). We find that plasma TG and FFA concentrations are lower and VLDL-TG and FFA plasma clearance rates are faster in women with high BAT than low BAT volume, whereas VLDL-TG and FFA appearance rates in plasma are not different between the two groups. These findings demonstrate that women with high BAT volume have lower plasma TG and FFA concentrations than women with low BAT volumes because of increased VLDL-TG and FFA clearance rates. This study was registered at ClinicalTrials.gov (NCT02786251).


Subject(s)
Fatty Acids, Nonesterified , Overweight , Humans , Female , Adipose Tissue, Brown/diagnostic imaging , Obesity , Triglycerides , Lipoproteins, VLDL
13.
Obesity (Silver Spring) ; 32(3): 540-546, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228469

ABSTRACT

OBJECTIVE: The objective of this study was to evaluate the relative importance of the basal rate of glucose appearance (Ra) in the circulation and the basal rate of plasma glucose clearance in determining fasting plasma glucose concentration in people with obesity and different fasting glycemic statuses. METHODS: The authors evaluated basal glucose kinetics in 33 lean people with normal fasting glucose (<100 mg/dL; Lean < 100 group) and 206 people with obesity and normal fasting glucose (Ob < 100 group, n = 118), impaired fasting glucose (100-125 mg/dL; Ob 100-125 group, n = 66), or fasting glucose diagnostic of diabetes (≥126 mg/dL; Ob ≥ 126 group, n = 22). RESULTS: Although there was a large (up to three-fold) range in glucose Ra within each group, the ranges in glucose concentration in the Lean < 100, Ob < 100, and Ob 100-125 groups were small because of a close relationship between glucose Ra and clearance rate. However, the glucose clearance rate at any Ra value was lower in the hyperglycemic than the normoglycemic groups. In the Ob ≥ 126 group, plasma glucose concentration was primarily determined by glucose Ra, because glucose clearance was markedly attenuated. CONCLUSIONS: Fasting hyperglycemia in people with obesity represents a disruption of the precisely regulated integration of glucose production and clearance rates.


Subject(s)
Blood Glucose , Hyperglycemia , Humans , Insulin , Obesity/complications , Glucose , Fasting
14.
Article in English | MEDLINE | ID: mdl-36775194

ABSTRACT

BACKGROUND: Neural oscillations support perception, attention, and higher-order decision making. Aberrations in the strength or consistency of these oscillations in response to stimuli may underlie impaired visual perception and attention in schizophrenia. Here, we examined the phase and power of alpha oscillations (8-12 Hz) as well as aspects of beta and theta frequency oscillations during a demanding visual sustained attention task. METHODS: Patients with schizophrenia (n = 74) and healthy control participants (n = 68) completed the degraded stimulus continuous performance task during electroencephalography. We used time-frequency analysis to evaluate the consistency (intertrial phase coherence) of the alpha cycle shortly after stimulus presentation (50-250 ms). For oscillation strength, we examined event-related desynchronization in a later window associated with decision making (360-700 ms). RESULTS: Alpha intertrial phase coherence was reduced in schizophrenia, and similar reductions were observed in theta (4-7 Hz) and beta (13-20 Hz), suggesting a lack of responsiveness in slower oscillations to visual stimuli. Alpha and beta event-related desynchronization were also reduced in schizophrenia and associated with worse task performance, increased symptoms, and poorer cognition, suggesting that limited responsiveness of oscillations is related to impairments in the disorder. Individuals with lower intertrial phase coherence had slower resting-state alpha rhythms consistent with dysfunctional oscillations persisting across default and task-related brain states. CONCLUSIONS: In schizophrenia, abnormalities in the phase consistency and strength of slower oscillations during visual perception are related to symptoms and cognitive functioning. Altered visual perception and impaired attention in the disorder may be the consequence of aberrant slower oscillations that fail to dynamically reset and modulate in response to stimuli.


Subject(s)
Schizophrenia , Humans , Electroencephalography , Brain , Visual Perception/physiology , Alpha Rhythm/physiology
15.
Ann Hepatol ; 29(1): 101133, 2024.
Article in English | MEDLINE | ID: mdl-37364816

ABSTRACT

The principal limitations of the terms NAFLD and NASH are the reliance on exclusionary confounder terms and the use of potentially stigmatising language. This study set out to determine if content experts and patient advocates were in favor of a change in nomenclature and/or definition. A modified Delphi process was led by three large pan-national liver associations. The consensus was defined a priori as a supermajority (67%) vote. An independent committee of experts external to the nomenclature process made the final recommendation on the acronym and its diagnostic criteria. A total of 236 panelists from 56 countries participated in 4 online surveys and 2 hybrid meetings. Response rates across the 4 survey rounds were 87%, 83%, 83%, and 78%, respectively. Seventy-four percent of respondents felt that the current nomenclature was sufficiently flawed to consider a name change. The terms "nonalcoholic" and "fatty" were felt to be stigmatising by 61% and 66% of respondents, respectively. Steatotic liver disease was chosen as an overarching term to encompass the various aetiologies of steatosis. The term steatohepatitis was felt to be an important pathophysiological concept that should be retained. The name chosen to replace NAFLD was metabolic dysfunction-associated steatotic liver disease. There was consensus to change the definition to include the presence of at least 1 of 5 cardiometabolic risk factors. Those with no metabolic parameters and no known cause were deemed to have cryptogenic steatotic liver disease. A new category, outside pure metabolic dysfunction-associated steatotic liver disease, termed metabolic and alcohol related/associated liver disease (MetALD), was selected to describe those with metabolic dysfunction-associated steatotic liver disease, who consume greater amounts of alcohol per week (140-350 g/wk and 210-420 g/wk for females and males, respectively). The new nomenclature and diagnostic criteria are widely supported and nonstigmatising, and can improve awareness and patient identification.


Subject(s)
Non-alcoholic Fatty Liver Disease , Female , Male , Humans , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology , Delphi Technique , Ethanol , Cardiometabolic Risk Factors , Consensus , Hepatomegaly
16.
Nature ; 625(7993): 175-180, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38093006

ABSTRACT

Oxytocin (OXT), a nine-amino-acid peptide produced in the hypothalamus and released by the posterior pituitary, has well-known actions in parturition, lactation and social behaviour1, and has become an intriguing therapeutic target for conditions such as autism and schizophrenia2. Exogenous OXT has also been shown to have effects on body weight, lipid levels and glucose homeostasis1,3, suggesting that it may also have therapeutic potential for metabolic disease1,4. It is unclear, however, whether endogenous OXT participates in metabolic homeostasis. Here we show that OXT is a critical regulator of adipose tissue lipolysis in both mice and humans. In addition, OXT serves to facilitate the ability of ß-adrenergic agonists to fully promote lipolysis. Most surprisingly, the relevant source of OXT in these metabolic actions is a previously unidentified subpopulation of tyrosine hydroxylase-positive sympathetic neurons. Our data reveal that OXT from the peripheral nervous system is an endogenous regulator of adipose and systemic metabolism.


Subject(s)
Adipose Tissue , Lipolysis , Neurons , Oxytocin , Animals , Humans , Mice , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adrenergic beta-Agonists/pharmacology , Lipolysis/drug effects , Neurons/metabolism , Oxytocin/metabolism , Oxytocin/pharmacology , Tyrosine 3-Monooxygenase/metabolism
17.
Diabetes ; 73(3): 391-400, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38015795

ABSTRACT

The assessment of ß-cell function, defined as the relationship between insulin secretion rate (ISR) and plasma glucose, is not standardized and often involves any of a number of ß-cell function indices. We compared ß-cell function by using popular indices obtained during basal conditions and after glucose ingestion, including the HOMA-B index, the basal ISR (or plasma insulin)-to-plasma glucose concentration ratio, the insulinogenic and ISRogenic indices, the ISR (or plasma insulin)-to-plasma glucose concentration areas (or incremental areas) under the curve ratio, and the disposition index, which integrates a specific ß-cell function index value with an estimate of insulin sensitivity, between lean people with normal fasting glucose (NFG) and normal glucose tolerance (NGT) (n = 50) and four groups of people with obesity (n = 188) with 1) NFG-NGT, 2) NFG and impaired glucose tolerance (IGT), 3) impaired fasting glucose (IFG) and IGT, and 4) type 2 diabetes. We also plotted the ISR-plasma glucose relationship before and after glucose ingestion and used a statistical mixed-effects model to evaluate group differences in this relationship (i.e., ß-cell function). Index-based group differences in ß-cell function produced contradicting results and did not reflect the group differences of the actual observed ISR-glucose relationship or, in the case of the disposition index, group differences in glycemic status. The discrepancy in results is likely due to incorrect mathematical assumptions that are involved in computing indices, which can be overcome by evaluating the relationship between ISR and plasma glucose with an appropriate statistical model. Data obtained with common ß-cell function indices should be interpreted cautiously.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose Intolerance , Insulin Resistance , Humans , Blood Glucose , Insulin , Insulin Resistance/physiology , Glucose , Fasting
18.
Diabetes Metab Res Rev ; 40(3): e3755, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38115715

ABSTRACT

In the primary care setting providers have more tools available than ever before to impact positively obesity, diabetes, and their complications, such as renal and cardiac diseases. It is important to recognise what is available for treatment taking into account diabetes heterogeneity. For those who develop type 2 diabetes (T2DM), effective treatments are available that for the first time have shown a benefit in reducing mortality and macrovascular complications, in addition to the well-established benefits of glucose control in reducing microvascular complications. Some of the newer medications for treating hyperglycaemia have also a positive impact in reducing heart failure (HF). Technological advances have also contributed to improving the quality of care in patients with diabetes. The use of technology, such as continuous glucose monitoring systems (CGM), has improved significantly glucose and glycated haemoglobin A1c (HbA1c) values, while limiting the frequency of hypoglycaemia. Other technological support derives from the use of predictive algorithms that need to be refined to help predict those subjects who are at great risk of developing the disease and/or its complications, or who may require care by other specialists. In this review we also provide recommendations for the optimal use of the new medications; sodium-glucose co-transporter-2 inhibitors (SGLT2i) and Glucagon-like peptide-receptor agonists 1 (GLP1RA) in the primary care setting considering the relevance of these drugs for the management of T2DM also in its early stage.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Heart Diseases , Sodium-Glucose Transporter 2 Inhibitors , Humans , Diabetes Mellitus, Type 2/complications , Hypoglycemic Agents/therapeutic use , Blood Glucose Self-Monitoring , Blood Glucose , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Glucagon-Like Peptide 1/therapeutic use , Heart Diseases/complications , Heart Diseases/drug therapy , Primary Health Care , Glucagon-Like Peptide-1 Receptor , Cardiovascular Diseases/complications
19.
JCEM Case Rep ; 1(2): luad015, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37908482

ABSTRACT

People with obesity who do not have the metabolic syndrome or components of the metabolic syndrome have been characterized as having metabolically healthy obesity (MHO). However, the existence of MHO has been questioned because people with MHO are at greater risk of developing diabetes and fatal cardiovascular disease than people who are lean and healthy. Here we report findings from a 25-year-old woman with rigorously defined MHO (normal oral glucose tolerance, insulin sensitivity [assessed using the hyperinsulinemic-euglycemic clamp procedure], plasma triglyceride, and intrahepatic triglyceride content) evaluated at baseline (body mass index, 37.7 kg/m2) and 5 years later, after a 32% (30.8 kg) increase in body mass (BMI, 49.6 kg/m2). Weight gain did not have adverse effects on fasting plasma glucose, oral glucose tolerance, ß-cell function, insulin sensitivity, plasma triglyceride, intrahepatic triglyceride content, or carotid intima-media thickness. Adipose tissue expression of genes involved in extracellular matrix formation remained unchanged. Adipose tissue expression of several inflammation-related genes increased by more than 30%, but was not associated with a corresponding increase in plasma cytokine concentrations, with the exception of IL-6 and C-reactive protein. The present case study demonstrates that some people with obesity are resistant to the adverse cardiometabolic effects of excess adiposity and marked weight gain.

20.
JHEP Rep ; 5(11): 100877, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37869071

ABSTRACT

Background & Aims: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a common complication of obesity with a hallmark feature of hepatic steatosis. Recent data from animal models of MAFLD have demonstrated substantial changes in macrophage composition in the fatty liver. In humans, the relationship between liver macrophage heterogeneity and liver steatosis is less clear. Methods: Liver tissue from 21 participants was collected at time of bariatric surgery and analysed using flow cytometry, immunofluorescence, and H&E microscopy. Single-cell RNA sequencing was also conducted on a subset of samples (n = 3). Intrahepatic triglyceride content was assessed via MRI and tissue histology. Mouse models of hepatic steatosis were used to investigate observations made from human liver tissue. Results: We observed variable degrees of liver steatosis with minimal fibrosis in our participants. Single-cell RNA sequencing revealed four macrophage clusters that exist in the human fatty liver encompassing Kupffer cells and monocyte-derived macrophages (MdMs). The genes expressed in these macrophage subsets were similar to those observed in mouse models of MAFLD. Hepatic CD14+ monocyte/macrophage number correlated with the degree of steatosis. Using mouse models of early liver steatosis, we demonstrate that recruitment of MdMs precedes Kupffer cell loss and liver damage. Electron microscopy of isolated macrophages revealed increased lipid accumulation in MdMs, and ex vivo lipid transfer experiments suggested that MdMs may serve a distinct role in lipid uptake during MAFLD. Conclusions: The human liver in MAFLD contains macrophage subsets that align well with those that appear in mouse models of fatty liver disease. Recruited myeloid cells correlate well with the degree of liver steatosis in humans. MdMs appear to participate in lipid uptake during early stages of MALFD. Impact and implications: Metabolic dysfunction associated fatty liver disease (MAFLD) is extremely common; however, the early inflammatory responses that occur in human disease are not well understood. In this study, we investigated macrophage heterogeneity in human livers during early MAFLD and demonstrated that similar shifts in macrophage subsets occur in human disease that are similar to those seen in preclinical models. These findings are important as they establish a translational link between mouse and human models of disease, which is important for the development and testing of new therapeutic approaches for MAFLD.

SELECTION OF CITATIONS
SEARCH DETAIL
...